
1

Assignment 2

1

Fork

• Proc_fork (*)

– Proc create

– As_copy()

– Pid_allocation

– File related clone of parent

– Current working directory

2

3

Fork & Trapframe

• Running in user mode, SP points to user-
level stack (not shown on slide)

SP

Representation of
Kernel Stack

(Memory)

4

Example Context Switch

• Fork syscall and we switch to the kernel
stack

SP

5

Example Context Switch

• We push a trapframe on the stack

– Also called exception frame, user-level context….

– Includes the user-level PC and SP

SP

trapframe

6

Example Context Switch

• Call ‘C’ code to process syscall

• Results in a ‘C’ activation stack building up

SP

trapframe‘C’ activation stack

2

Fork
• Creates a thread must

– and have a similar stack layout to the stack we are currently
using

– Trapframe need to be on the stack

• Does not matter where (local variable)

– Enter_forked_process

• Tweaks trapframe prior to calling md_usermode

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel stack of other
new processes’ thread

8

Context Switch

• We save the current SP in the PCB (or TCB),

and load the SP of the target thread.

– Thus we have switched contexts

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

9

Example Context Switch

• Load the target thread’s context, and
return to C

– Enter_forked_process

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State
10

Example Context Switch

• The C continues and (in this example)
returns to user mode.

– mips_usermode

SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State

11

Example Context Switch

• The user-level context is now child

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
12

Pids of Processes
• A processes’ information is stored in

a process control block (PCB)

– Reality is much more complex (hashing,

chaining, allocation bitmaps,…)

• Two main parts

– Allocate unused pid

– Look up a struct proc given a pid

P0

P1

P2

P3

P4

P5

P6

P7

3

waitpid

• See the man page

• Scenarios:

– Child exit after waitpid

– Child exits before waitpid

– Parent exits before child exits

• waitpid never called?

• Tradition unix behaviour:

– https://en.wikipedia.org/wiki/Zombie_process

13

Execv

• Create a new address space

• Destroy the old

– as_activate() the new

• Copying the arguments to the child

– Copy into kernel

– Copy out into child

• Similar to run program

14

Execv - args

• A null terminated array of pointers to
strings

– Passing into parent

– Expected to be in child

– See Note: userland/lib/crt0/mips/crt0.S

• Register A0 = argc

• Register A1 = argv

• Note: You can assume ARG_MAX = 4K
15

