Scheduling

THE UNIVERSITY OF 1
NEW SOUTH WALES
L

Learning Outcomes

» Understand the role of the scheduler, and
how its behaviour influences the
performance of the system.

« Know the difference between 1/0O-bound
and CPU-bound tasks, and how they
relate to scheduling.

THE UNIVERSITY OF 2
NEW SOUTH WALES
L

What is Scheduling?

— On a multi-programmed system

* We may have more than one Ready process
— On a batch system

» We may have many jobs waiting to be run
— On a multi-user system

* We may have many users concurrently using the
system

* The scheduler decides who to run next.

— The process of choosing is called scheduling.

THE UNIVERSITY OF 3
NEW SOUTH WALES
L

|s scheduling important?

* Itis not in certain scenarios

— If you have no choice
* Early systems
— Usually batching
— Scheduling algorithm simple
» Run next on tape or next on punch tape
— Only one thing to run
» Simple PCs
— Only ran a word processor, etc....
» Simple Embedded Systems
— TV remote control, washing machine, etc....

THE UNIVERSITY OF 4
NEW SOUTH WALES
L

Is scheduling important?

* Itis in most realistic scenarios
— Multitasking/Multi-user System
« Example
— Email daemon takes 2 seconds to process an email
— User clicks button on application.
« Scenario 1
— Run daemon, then application
» System appears really sluggish to the user
« Scenario 2
— Run application, then daemon
» Application appears really responsive, small email delay is
unnoticed
» Scheduling decisions can have a dramatic effect on the
perceived performance of the system

— Can also affect correctness of a system with deadlines

Application Behaviour

@ [—T — ——1 1
/ \
Long CPU burst
Waiting for I/O

Short CPU burst

(b)
Time
» Bursts of CPU usage alternate with periods of 1/0

wait

THE UNIVERSITY OF 5
NEW SOUTH WALES
e

THE UNIVERSITY OF 6
NEW SOUTH WALES
e

Application Behaviour

(a) [—A

~ — I——]
Long CPU burst \

Waiting for I/O

Short CPU burst

(b)

Time
_—

a) CPU-Bound process
* Spends most of its computing
« Time to completion largely determined by received CPU time

Application Behaviour

(a) [—A

~ — I——]
Long CPU burst \

Waiting for I/O

Short CPU burst

(b)

Time
b) I/0-Bound process
— Spend most of its time waiting for I/O to complete
« Small bursts of CPU to process I/O and request next I/O
— Time to completion largely determined by I/O request time

Short CPU burst

Time
—_—

*« We need a mix of CPU-bound and I/0-bound processes
to keep both CPU and I/O systems busy

* Process can go from CPU- to I1/0O-bound (or vice versa)
in different phases of execution

THE UNIVERSITY OF 9
NEW SOUTH WALES
L

9

ﬂ THE UNIVERSITY OF 7 ﬂ THE UNIVERSITY OF 8
NEW SOUTH WALES NEW SOUTH WALES
L L
Observation o - N .
@ [—A 1 1] /
/ Long CPU burst
Long CPU burst Waiting for /0
Walting for 110 Short CPU burst

(b)

Time

. Choosing to run an I/O-bound process delays a CPU-bound
process by very little
. Choosing to run a CPU-bound process prior to an 1/0O-bound
process delays the next I/O request significantly
— Nooverlap of I/O waiting with computation
— Results in device (disk) not as busy as possible
i = Generally, favour I/O-bound processes over CPU-bound processes
Lo

10

When is scheduling performed?

— A new process
« Run the parent or the child?
— A process exits
* Whoruns next?
— A process waits for /0
* Whoruns next?
— A process blocks on a lock
* Whoruns next? The lock holder?
— An |/O interrupt occurs
+ Who do we resume, the interrupted process or the process that was
waiting?
— On a timer interrupt? (See next slide)
* Generally, a scheduling decision is required when a
process (or thread) can no longer continue, or when an
activity results in more than one ready process.

THE UNIVERSITY OF 11
NEW SOUTH WALES
e

Preemptive versus Non-preemptive
Scheduling

* Non-preemptive
— Once a thread is in the running state, it continues until it
completes, blocks on 1/O, or voluntarily yields the CPU
— A single process can monopolised the entire system
* Preemptive Scheduling
— Current thread can be interrupted by OS and moved to ready
state.

— Usually after a timer interrupt and process has exceeded its
maximum run time

« Can also be as a result of higher priority process that has become
ready (after I/O interrupt).

— Ensures fairer service as single thread can’t monopolise the
system
« Requires a timer interrupt

THE UNIVERSITY OF 12
NEW SOUTH WALES

11

e

12

Categories of Scheduling Algorithms

* The choice of scheduling algorithm depends on the
goals of the application (or the operating system)
— No one algorithm suits all environments
« We can roughly categorise scheduling algorithms as
follows
— Batch Systems

« No users directly waiting, can optimise for overall machine
performance

— Interactive Systems

« Users directly waiting for their results, can optimise for users
perceived performance

— Realtime Systems

« Jobs have deadlines, must schedule such that all jobs (predictably)
meet their deadlines.

THE UNIVERSITY OF 13
NEW SOUTH WALES
L

Goals of Scheduling Algorithms

+ All Algorithms
— Fairness
» Give each process a fair share of the CPU
— Policy Enforcement

* What ever policy chosen, the scheduler should
ensure it is carried out

— Balance/Efficiency
* Try to keep all parts of the system busy

THE UNIVERSITY OF 14
NEW SOUTH WALES
L

Goals of Scheduling Algorithms

* Interactive Algorithms
— Minimise response time
« Response time is the time difference between issuing a
command and getting the result
— E.g selecting a menu, and getting the result of that selection
« Response time is important to the user’s perception of the
performance of the system.
— Provide Proportionality
« Proportionality is the user expectation that short jobs will

have a short response time, and long jobs can have a long
response time.

« Generally, favour short jobs

THE UNIVERSITY OF 15
NEW SOUTH WALES
L

Goals of Scheduling Algorithms

* Real-time Algorithms
— Must meet deadlines
» Each job/task has a deadline.
* A missed deadline can result in data loss or
catastrophic failure
— Aircraft control system missed deadline to apply brakes
— Provide Predictability
» For some apps, an occasional missed deadline is
okay
— E.g. DVD decoder

* Predictable behaviour allows smooth DVD
decoding with only rare skips

THE UNIVERSITY OF 16
NEW SOUTH WALES
L

Interactive Scheduling

THE UNIVERSITY OF 17
NEW SOUTH WALES

e

Round Robin Scheduling

» Each process is given a timeslice to run in

* When the timeslice expires, the next
process preempts the current process,
and runs for its timeslice, and so on

— The preempted process is placed at the end
of the queue

* Implemented with
— A ready queue
— A regular timer interrupt

17

THE UNIVERSITY OF 18
NEW SOUTH WALES
e

Example

* 5 Process

— Process 1 arrives
slightly before process
2, etc...

— All are immediately
runnable

— Execution times
indicated by scale on
X-axis

J]

J.

/3
yZ
J3

0 2 4 6 8 10 12 14 16 18 20

e

THE UNIVERSITY OF 19
NEW SOUTH WALES
L

Round Robin Schedule

a1 L] L]
2 U U]
J3]]
2] []]

s] L] HEERERE

0 2 4 6 8 10 12 14 16 18 20

HRERE

D Timeslice = 1 unit

THE UNIVERSITY OF 20
NEW SOUTH WALES
L

Round Robin Schedule

J 1T CTT]
n D:D Timeslice = 3 units
3 1]

Z (LT]
7 (111 (111

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 21
NEW SOUTH WALES
L

Round Robin
* Pros

— Fair, easy to implement
» Con
— Assumes everybody is equal
* Issue: What should the timeslice be?
— Too short
« Waste a lot of time switching between processes
« Example: timeslice of 4ms with 1 ms context switch = 20% round
robin overhead
— Too long
« System is not responsive
« Example: timeslice of 100ms

— If 10 people hit “enter” key simultaneously, the last guy to run will only
see progress after 1 second.

« Degenerates into FCFS if timeslice longer than burst length

THE UNIVERSITY OF 22
NEW SOUTH WALES
L

Priorities

» Each Process (or thread) is associated with a
priority

* Provides basic mechanism to influence a
scheduler decision:

— Scheduler will always chooses a thread of higher
priority over lower priority

« Priorities can be defined internally or externally
— Internal: e.g. I/O bound or CPU bound
— External: e.g. based on importance to the user

THE UNIVERSITY OF 23
NEW SOUTH WALES
e

Example

. 5Job
Ji [(TT1] obs

— Job number equals
priority
J2
D:l:‘ — Priority 1 > priority 5
J3 (1] — Release and execution
times as shown
d [LLT TIT] -« Priority-driven
preemptively
A TTTTT]

scheduled
0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 24
NEW SOUTH WALES
e

THE

UNIVERSITY OF

NEW SOUTH WALES

=
29

THE UNIVERSITY OF
NEW SOUTH WALES

30

Example Example
Ji [(TT] Ji CIT]
72 111 72 LLT]
73 1] 73 (1]
g LT IT] a0 LT IT]
s TTTTT] A TTTT]
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
B L » B L &
L L
25 26
Example Example
7l LT J1 LT
72 [(TT] J2 CIT]
73 1] 73 L]
g LLTT 1T g LT 1T
s LI TTT] s L] LT
0 2 4 6 8 0 12 14 16 18 20 0 2 4 6 8 0 12 14 16 18 20
A L o A L »
| |
27 28
Example Example
Ji [(TT] Ji CIT]
2 111 72 (T T]
73 [1] 73 L]
g LT 1T g L0 L1111
g 1] [[1] g 1] [[1]
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

=
30

Example Example
Ji (IT] Ji HEN
2 L1 2 L]
J3][] J3]]
s L1 [[[] s 1] |
s 1] [(T11] s 1] [(TTT1]
0 2 4 6 8 10 12 14 16 18 20 0 2 4 68
E Tt o E Tt
31 32
Example Ex
Jl (1T Jl L]
72 L1 [72 C1]
J3]] J3]
aq 1] NN aq 1]
s 1] (T 111 s 1]
0 2 4 6 & 10 12 14 16 18 20 0 2 4 6 8
E Tk ® E Tk
33 34
Example Exampl
Ji (1] Ji CIT]
J2 (1] [] J2 L]
J3]] J3]]
a1 [T 111 a1 [T 1T
s 1] [T 111 s 1] [T TT]
0 2 4 6 8 10 12 14 16 18 20 0o 2 4 6 8 2 M

THE UNIVERSITY OF 35 THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
e e

Example Example
Ji CIT] Ji (111
2 L] UJ 2 L] U]
J3] [] J3]]
q 1] [T 111 q 1] CL 1T
s 1] [TTT] s 1] [TTT]
0 2 4 6 & 10 12 14 16 18 20 0 2 4 6 & 10 12" 14 16 18 20
B L 7 B L »
L L
37 38
Example Example
Jl CIT] J1 CIT]
g (1]] g2 [T] L]
J3]] J3]]
a1 1] a1 LT 1T
s 1] [T TT] s 1] [T TT]
0 2 4 6 & 10 12 14 16 18 20 0 2 4 6 & 10 12 14 16 18 20
A L ® A L ©
39 40
Example Example
Jl LT Jl [(TT1]
. L] L] 2 L] U]
J3]] J3]]
Ha L] CLIT] a1 LT 1T
s 1] [T TT] s 1] CITT]
0 2 4 6 & 10 12 14 16 18 20 0 2 4 6 & 10 12 14 16 18 20
THE UNIVERSITY OF 41 THE UNIVERSITY OF 42
NEW SOUTH WALES NEW SOUTH WALES

=
41

=
42

Example

Jl (I

72 1] (]
J3]]
Hq 1]
s 1] (LTT]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 43
NEW SOUTH WALES
L

43

Example

Jl LT

72 (1] L]
J3]]
d 1]
s 1]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 44
NEW SOUTH WALES
L

44

Jl (111

J2 L] L]
J3]]
Jg4 1]
s 1]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 45
NEW SOUTH WALES
L

Priorities

h?a:z:?s Runable processes

Priority 4 —D—D—D (Highest priority)
Priority 2 —D

Priority 1 (Lowest priority)

» Usually implemented by multiple priority queues, with
round robin on each queue

« Con
— Low priorities can starve

« Need to adapt priorities periodically
— Based on ageing or execution history

THE UNIVERSITY OF 46
NEW SOUTH WALES
L

Traditional UNIX Scheduler

. Two-level scheduler Highest
— High-level scheduler prierity {, . o
schedules processes :
between memory and -4 Waiting for disk 1/0 —O Process waiting
disk 3 Waiting for disk buffer in kernel mode
— Low-level scheduler is 2 Waiting for terminal input
CPU scheduler 4| Waiting for terminal output
Based on a multi- o Waiting for child to exist
level queue structure 0 User priority 0
with round robin at -
1 User priority 1 OO
each level - Process waiting|
2 User priority 2 thiliseF mode
3 User priority 3 —O
4 : 4
Lowest
priority Process queued
on priority level 3
THE UNIVERSITY OF 47

NEW SOUTH WALES

e

47

Traditional UNIX Scheduler

. The highest priority (lower
number) is scheduled

. Priorities are re-calculated once e
per second, and re-inserted in T ‘ T |
appropriate queue 4 Waingfor disk 10 <D pyocpss waitin
. . . E kernel)
— Avoid starvation of low priority 3 | Walting for disk buffer niemeimoce
threads 2 Waiting for terminal input
X 41| Waiting for terminal output
— Penalise CPU-bound threads o Vialing for ikl i et
0 User priority 0 I
1 User priority 1 —O—O
Process waiting
2 User priority 2 1 tiseF mode
3 User priority 3 —O
Lowest |_ . T [
priority Process queued

on priority level 3

THE UNIVERSITY OF 48
NEW SOUTH WALES
e

Traditional UNIX Scheduler

. Priority = CPU_usage +nice +base
- CPU_usage = number of clock ticks
Decays over time to avoid Highest
permanently penalising the process Pvm'\'vl,_j R
- Nice is a value given to the process : |
by a user to permanently boost or 4
reduce its priority 3
Reduce priority of background jobs 2
- Base is a set of hardwired, negative 4
values used to boost priority of 1/0 0 Waiting for child to exist
o
1
2
3

Waiting for disk 1/0 —O

Process waiting|
Waiting for disk buffer in kernel mode

Waiting for terminal output [~

Waiting for terminal input ‘

bound system activities
Swapper, disk I/O, Character /O

User priority 0

User priority 1 —O—O I

Process waiting
User priority 2 in user mode.
User priority 3 —O
Lowest .)
Beloitty Process queued
on priority level 3
THE UNIVERSITY OF 49
NEW SOUTH WALES
L

Multiprocessor Scheduling

» Given X processes (or threads) and Y
CPUs,
— how do we allocate them to the CPUs

THE UNIVERSITY OF 50
NEW SOUTH WALES
L

A Single Shared Ready Queue

* When a CPU goes idle, it take the highest
priority process from the shared ready queue

(o] (] [2] []

[o]
@ CPU 12
CPU 4/ E goes idle

goes idle

Single Shared Ready Queue

* Pros
— Simple
— Automatic load balancing
» Cons
— Lock contention on the ready queue can be a
major bottleneck
* Due to frequent scheduling or many CPUs or both
— Not all CPUs are equal

» The last CPU a process ran on is likely to have
more related entries in the cache.

THE UNIVERSITY OF 52
NEW SOUTH WALES
L

Affinity Scheduling

» Basic Idea

— Try hard to run a process on the CPU it ran
on last time

» One approach: Multiple Queue
Multiprocessor Scheduling

THE UNIVERSITY OF 53
NEW SOUTH WALES
e

Multiple Queue SMP Scheduling

« Each CPU has its own ready queue
» Coarse-grained algorithm assigns processes to CPUs
— Defines their affinity, and roughly balances the load
* The bottom-level fine-grained scheduler:
— Is the frequently invoked scheduler (e.g. on blocking on I/O, a
lock, or exhausting a timeslice)
— Runs on each CPU and selects from its own ready queue
« Ensures affinity
— If nothing is available from the local ready queue, it runs a
process from another CPUs ready queue rather than go idle
+ Termed “Work stealing”

THE UNIVERSITY OF 54
NEW SOUTH WALES
e

Multiple Queue SMP Scheduling

* Pros
— No lock contention on per-CPU ready queues
in the (hopefully) common case
— Load balancing to avoid idle queues

— Automatic affinity to a single CPU for more
cache friendly behaviour

THE UNIVERSITY OF 55
NEW SOUTH WALES
L

10

