Memory Management

Learning Outcomes

* Appreciate the need for memory management in operating
systems, understand the limits of fixed memory allocation
schemes.

* Understand fragmentation in dynamic memory allocation,
and understand basic dynamic allocation approaches.

* Understand how program memory addresses relate to
physical memory addresses, memory management in base-
limit machines, and swapping

* An overview of virtual memory management.

. Buwsw F uxsw
1
Process 0S Memory Management
* One or more threads of execution * Keeps track of what memory is in use and what memory is free
* Resources required for execution * Allocates free memory to process when needed
* Memory (RAM) + And deallocates it when they don’t
* Program code ("text”) + Manages the transfer of memory between RAM and disk.
« Data (initialised, uninitialised, stack)
« Buffers held in the kernel on behalf of the process
* Others
* CPU time
* Files, disk space, printers, etc.
- Buwsw F uxsw
3

Memory Hierarchy

* Ideally, programmers want

memory that is
* Fast
* Large
* Nonvolatile

B[

* Not possible ianrery
* Memory management
coordinates how memory
hierarchy is used.
* Focus usually on RAM <
Disk

electronic disk

magnetic disk

optical disk

I

magnetic tapes

0S Memory Management

* Two broad classes of memory management systems
* Those that transfer processes to and from external storage during execution.
+ Called swapping or paging
* Those that don’t
* Simple
+ Might find this scheme in an embedded device, dumb phone, or smartcard.

Basic Memory Management
Monoprogramming without Swapping or Paging

Monoprogramming

* Okay if
OxFFF ... Oneratin Davica « Only have one thing to do
s;stem ir? drivers in ROM * Memory available approximately equates to memory required
Usai ROM * Otherwise,
* Poor CPU utilisation in the presence of /0 waiting
program User T o)
* Poor memory utilisation with a varied job mix
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0
(a) (b) (c)
Three simple ways of organizing memory
-an Operating system with one user process
» Busw & unsw
7 8
E1
Idea Modeling Multiprogramming
* Recall, an OS aims to
* Maximise memory utilisation . 20% 1/0 wait
+ Maximise CPU utilization £ 100 =
« (ignore battery/power-management issues) o 50% |/O wait
5 L A
* Subdivide memory and run more than one process at once!!!! 2’ 80
* Multi ing, Multitaski =
ultiprogramming, Multitasking -5 60 20% 1/O wait
W
S 40
5
z 20
o
| | | | |] | | | |
0 1 2 3 4 5 6 7 8 9 10
Degree of multiprogramming
CPU utilization as a function of number of processes in memory
o Busw & unsw
9 10
General problem: How to divide memory o divid
Problem: How to divide memor
between processes? Y
* Given a workload, how to we
* Keep track of free memory? *One approach o A
* Locate free memory for a new process? _— « divide memory into fixed equal- rocess
* Overview of evolution of simple memory sized partitions —
management * Any process <= partition size can
« Static (fixed partitioning) approaches be loaded into any partition
« Simple, predicable workloads of early computing _— « Partitions are free or busy Process B
* Dynamic (partitioning) approaches —_—
* More flexible computing as compute power and
complexity increased. Process C
* Introduce virtual memory - FEESE
+Segmentation and paging —_—
Process D
Process D
11 12

Slide 10

KE1 Kevin Elphinstone, 30/03/2020

Simple MM: Fixed, equal-sized partitions

Simple MM: Fixed, variable-sized partitions

Multiple

d b input queues 800K
. -, * Divide memory at boot time into a [CHF Partition 4
* Any unused space in the partition i) h .
Any ted P P Process A selection of different sized partitions 700K
Is was e. . « Can base sizes on expected workload Patiion 3
* Called internal fragmentation « Each partition has queue:

*Processes smaller than main * Place process in queue for smallest 400K
memory, but larger than a orocess B partition that it fitsin. y O Partton2
partition cannot run. . !’roces:ei Watlt ftor when assigned partition 200K

Is empty 1o star CHH— Partiton 1
Operating 100K
system | o
Process C (@)
Process D
— UNSW i Buwsw
13 14
Alternative queue strategy
*|ssue Muliple *Single queue, search for
. iy input queues 800K . .
Some partitions may be N p— any jobs that fit
idle 700K * Small jobs in large partition Partition 4
* Small jobs available, but only if necessary
large partition free Partition 3 * Increases internal memory !
* Workload could be fragmentation inpat ouo Patition 3
unpredictable 400K
[} Partition 2
200K Partition 2
[HH 1 Partition 1
100K ™
Operating Partition 1
sy(su:m 0 O:yesrt:"m"g
@
®)
- Busw . Fuwsw
15 16
Fixed Partition Summary Dynamic Partitioning
*Simple * Partitions are of variable length
. | * Allocated on-demand from ranges of free memory
L]
Easy to implement * Process is allocated exactly what it needs
* Can result in poor memory utilisation * Assumes a process knows what it needs
* Due to internal fragmentation
*Used on IBM System 360 operating system
(OS/MFT)
* Announced 6 April, 1964
* Still applicable for simple embedded systems
« Static workload known in advance
17 18

Oiperating Tiperatimg Tiperatimng, Tiperating MOperatmg | OperatEg] [Operatg]
Process 1 20M Process | 20M Process | } .0 Do S0 Process 1 M g Pricess 2 } 14
oam
SN Process 2 % [EAR Process 2 %]4!\-1 % L4M Process 4 }- fAT] Prowcess 4 }- BN Process 4 E- BN
=it &h [
36M £ Y ¢
M [1= Process 3 F&m Process 3 | & 1M Process 3 l,wm Processd | & 181
Fam
Fam Foam Foam tam
a) (b} ic) (d)
(3} in ig) (h)
Figure 7.4 The Effect of Dynamic Partitioni: . " iz
e } e Figure 7.4 The Effect of Dynamic Partitioning
19 20

Dynamic Partitioning

*In previous diagram
* We have 16 meg free in total, but it can’t be used to run
any more processes requiring > 6 meg as it is fragmented
* Called external fragmentation

*We end up with unusable holes

Recap: Fragmentation

* External Fragmentation:
* The space wasted external to the allocated memory
regions.
* Memory space exists to satisfy a request, but it is
unusable as it is not contiguous.

* Internal Fragmentation:
* The space wasted internal to the allocated memory
regions.
« allocated memory may be slightly larger than requested
memory; this size difference is wasted memory internal to
a partition.

o Buww 2 Busw
21 22
Dynamic Partition Allocation Algorithms Classic Approach
* Also applicable to malloc () -like in-application
allocators * Represent available memory as a linked list of
* Given a region of memory, basic requirements are: avallablg holes” (free memory ranges).
* Quickly locate a free partition satisfying the request Base,.5|ze . .
« Minimise CPU time search * Kept in order of increasing address
« Minimise external fragmentation « Simplifies merging of adjacent holes into larger holes.
« Minimise memory overhead of bookkeeping * List nodes be stored in the “holes” themselves
« Efficiently support merging two adjacent free partitions
into a larger partition
Address Address Address Address
" Size Size Size Size
Link / Link / Link / Link

23

24

Coalescing Free Partitions with Linked Lists

Before X terminates After X terminates

@[A | x [B]| becomes
| A | x 777 becomes
@V x | B | becomes
& VA x V7] becomes

7

AN
I

\
\
\
g

\
\

* First-fit algorithm

* Scan the list for the first entry that fits
« If greater in size, break it into an allocated and free part
* Intent: Minimise amount of searching performed
* Aims to find a match quickly
* Biases allocation to one end of memory
« Tends to preserve larger blocks at the end of memory

Dynamic Partitioning Placement Algorithm

Address Address Address Address
Four neighbor combinations for the terminating process X ——1size Size | size size
Link / Link Link / Link
= Bunsw & unsw
25 26
Dynamic Partitioning Placement Algorithm Dynamic Partitioning Placement Algorithm
* Next-fit * Best-fit algorithm
« Like first-fit, except it begins its search from the pointin * Chooses the block that is closest in size to the request
list where the last request succeeded instead of at the o Performs worse than first-fit
beginning. * Has to search complete list
* (Flawed) Intuition: spread allocation more uniformly over entire « does more work than first-fit
memory to avoid skipping over small holes at start of memory « Since smallest block is chosen for a process, the smallest
« Performs worse than first-fit as it breaks up the large free space at amount of external fragmentation is left
end of memory. * Create lots of unusable holes
Address Address Address Address Address Address Address Address
| Size Size Size Size | Size Size Size Size
Link / Link] Link = Link Link / Link] Link] Link
o B unsw n Busw
27 28
T — o —
. g . . zM M
Dynamic Partitioning Placement Algorithm — —_—
o — Y] m—
. . Best Fit
* Worst-fit algorithm P T
allocated | S—
* Chooses the block that is largest in size (worst-fit) ock (14K) | M
* (whimsical) idea is to leave a usable fragment left over
- ™
* Poor performer i -
* Has to do more work (like best fit) to search complete list
* Does not result in significantly less fragmentation (] Aot s
| | D Vree picek wi| |
Next Fit
36M |
M
(@) Before (b) After
Address Address Address Address
" Size Size / Size Size
Link / Link Link / Link Figure 7.5 Example Memory Configuration Before
and After Allocation of 16 Mbyte Block
29 30

Dynamic Partition Allocation Algorithm

* Summary

« First-fit generally better than the others and easiest to implement
* You should be aware of them

* They are simple solutions to a still-existing OS or application

service/function — memory allocation.
* Note: Largely have been superseded by more complex and
specific allocation strategies
« Typical in-kernel allocators used are lazy buddy, and slab allocators

31

Compaction

* We can reduce external
fragmentation by
compaction

* Shuffle memory contents to
place all free memory
together in one large block.

* Only if we can relocate
running programs?

* Pointers?

* Generally requires hardware

support

32

Some Remaining Issues with Dynamic
Partitioning

* We have ignored
* Relocation
* How does a process run in different locations in memory?
* Protection
+ How do we prevent processes interfering with each other

33

When are memory
addresses bound?

compiler or
assembler

object
module

* Compile/link time
« Compiler/Linker binds the addresses
* Must know “run” location at compile

time
* Recompile if location changes
* Load time

* Compiler generates relocatable code
* Loader binds the addresses at load
time
* Run time

* Logical compile-time addresses
translated to physical addresses by
special hardware.

time (run
oMoy time) \
image

Enemo execution
binary

source
program

Example Logical Address-Space Layout

Information Eatry poiat ; [Proces Control Bockly 0¥0000
1o program
* Logical addresses Branch
refer to specific M Rt
locations within the mereasing
program e
* Once running, these Reference
todata
address must refer
to real physical Lo
memory
» When are logical g i »
addresses bound to S
. OXFFFF
physical? ——
Figure 7.1 _Addressing Requirements for a Process
34

Hardware Support for Runtime Binding and
Protection

* For process B to run using logical addresses

* Process B expects to access addresses from zero to
some limit of memory size

limit

0x0000 I-

35

36

Hardware Support for Runtime Binding and
Protection

OXFFFF

* For process B to run using logical addresses
* Need to add an appropriate offset to its logical
addresses
* Achieve relocation
* Protect memory “lower” than B
* Must limit the maximum logical address B can
generate limit I
* Protect memory “higher” than B

0x0000

base

Hardware Support for Relocation and Limit

Registers
limit relocation
register register
logical physical
address yes address
CPU > < > + » memo
\/ L

trap; addressing error

37 38
Base and Limit Registers Base and Limit Registers
OXFFFF OxFFFF
* Also called base=0x5000 *Also called base=0x4000
* Base and bound registers Ll * Base and bound registers Tl
* Relocation and limit registers * Relocation and limit registers
*Base and limit registers *Base and limit registers
* Restrict and relocate the currently 0uorEF I * Restrict and relocate the currently
active process liTnity +|_ 00000 base active process
* Base and limit registers must be * Base and limit registers must be
changed at changed at Ox6FFF
* Load time * Load time limit Process C
* Relocation (compaction time) * Relocation (compaction time) Ox4000
* On a context switch * On a context switch
0x0000 0x0000
39 40

Base and Limit Registers

* Pro
* Supports protected multi-processing (-tasking)
* Cons
* Physical memory allocation must still be contiguous
* The entire process must be in memory
* Do not support partial sharing of address spaces
* No shared code, libraries, or data structures between processes

41

Timesharing

OXFFFF

* Thus far, we have a system suitable for a
batch system
* Limited number of dynamically allocated
processes
* Enough to keep CPU utilised
* Relocated at runtime
* Protected from each other

* But what about timesharing?

* We need more than just a small number of
processes running at once

* Need to support a mix of active and inactive
processes, of varying longevity

0x0000

42

Swapping

* A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution.

* Swapping involves transferring the whole process

* Backing store — fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access
to these memory images.

« Can prioritize — lower-priority process is swapped out so
higher-priority process can be loaded and executed.

* Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

* slow

Schematic View of Swapping

-
operating
system
process
@ swap out Py
process
@ swap in Py
user
Space backing store
main memory

o Busw o Busw
43 44
So far we have assumed a process is smaller than .
Virtual Memory
memory
* What can we do if a process is larger than main memory? *Developed to address the issues identified with the
simple schemes covered thus far.
* Two classic variants
* Paging
* Segmentation
* (no longer covered in course, see textbook if interested)
* Paging is now the dominant one of the two
» We'll focus on it
*Some architectures support hybrids of the two
schemes
* E.g. Intel IA-32 (32-bit x86)
* Becoming less relevant
o Bunsw o FBusw
45 46
Virtual Memory — Paging Overview
n":"l': Main memory Main memory Main memory
) humber
« Partition physical memory into small equal el " 4 Al 0 il
sized chunks <pice 1 i Al 1 Al
* Called frames 60K-64K [X 2 2 A2 2 A2
- s . 3 3 A3 3 AJ
« Divide each process’s virtual (logical) address sgx-gok [x }vmua| page
space into same size chunks 5oK-56K | X 4 4 = B
* Called pages 3 2 L NNNANNN
pag 4sk-52K [X 6 6 6 B
« Virtual memory addresses consist of a page 44K48K = NN
number and offset within the page 3 T T 7
* OS maintains a page table ggi-zi : Physical N 8 8
« contains the frame location for each page) njjedmory 2 2 2
* Used by hardware to translate each virtual S2K:asK X address 10 10 10
address to physical address 28K-32K| X 28K-32K 11 11 11
* The relation between 24K-28K| X 24K-28K 12 12 12
virtual addresses and physical memory 20K-24K 3 20K-24K 13 13 13
addresses is given by page table 16K-20K 2 16K-20K 14 14 14
* Process’s physical memory does not have to {ok.16x [0 12K-16K
be contiguous 8K-12K 5 8K-12K i) Fifteen Available Frames (b Load Process A b Load Process B
aK-8K [1 4K-8K
okaK | 2 N OK-4K Figure 7.9 Assignment of Process Pages to Free Frames
Page framg
47 48

Main memory Main memory Main memory
0 AD 0 A0 0 AL
1 Al 1 Al 1 Al i
2 A2 2 A2 2 T Pagl ng
3 A 3 A3 3 A3
4 B 4 4 DA * No external fragmentation
H 1. 5 5 D.1 . . .
o T 2\\ e 5 = * Small internal fragmentation (in last page)
7 LA 1 7 P * Allows sharing by mapping several pages to the same frame
¢/ ¢/
8 A] B 8 A . . .
3 /g 7 s ////g 7 3 /g 7 * Abstracts physical organisation
10 Wme 3 10 PZme a3 10 Pe 3 * Programmer only deal with virtual addresses
1 H &t D3 * Minimal support for logical organisation
12 . 12 o * Each unit is one or more pages
13 13 13 pag
14 14 14
(d) Load Process C (e) Swapout B (1) Load Process D
p| 0O 0| — 0| 7 0| 4 [[13]
| 1 1| — 1| 8 1 [HES [14]
E |2 2 = 21 9 2] 6 Free framg
B | 3 Process B 3 10 3|11 list
Process A page table Process C 4 12
page table page table Process D
page table Fiew
49 50
. MMU Operation
Memory Management Unit P
(also called Translation Look-aside Buffer — TLB) Qg
physical
ey
15| 000]
The CPU sends virtual :3 gg %
CPU addresses to the MMU Assume for now that 12[000 [0
package the pz:agetable is) :l" L‘X‘):) %
contained wholly in o[To1 |7
cPU -] registers within the Page__ 8l o0 [0} ;5;;;;;';:;W
/ Memory Memor Disk MMU —in practice it is o[To i
management Y controller not s[on |1
unit 4] 100 11|
3[000 1
2[110 [1]
1[To01 |1 -
X L] TN K g b
Bus Virtual page = 2 is used
:: a:‘:;:x into the Incoming
The MMU sends physical i vl
addresses to the memory (o] EEEEE [o] (8196)
The position and function of the MMU Internal operation of simplified MMU with 16 4 KB pages
o Bunsw & unsw

51

52

