3/1/2021

UNIX File Management
(continued)

OS storage stack (recap)

Application

FD table
OF table
VFS
FS
Buffer cache
Disk scheduler
Device driver

1 Bunsw SsW
1 2
Virtual File System (VFS) Older Systems only had a single file system
FD table *They had file system specific open, close, read,
OF table write, ... calls.
VFs However, modern systems need to support many
FS file system types
Buffer cache
. —1S09660 (CDROM), MSDOS (floppy), ext2fs, tmpfs
Disk scheduler
Device driver
sW 4 Funsw
3 4
Supporting Multiple File Systems Virtual File System (VFS)
Alternatives FD table
» Change the file system code to understand OF table
different file system types VFS
— Prone to code bloat, complex, non-solution FS | | FS2
+ Provide a framework that separates file system Buffer cache
independent and file system dependent code. Disk scheduler Disk scheduler
— Allows different file systems to be “plugged in” Revicoldiver] IDERISD GliEr
=]
1
5 B UNsw
6

3/1/2021

Virtual file system (VFS)

] open(“/home/leonidr/file”, ...);

Traversing the directory hierarchy
ext3 may require VFS to issue requests
to several underlying file systems

/home/leonidr

nfs

Virtual File System (VFS)

» Provides single system call interface for many file
systems

— E.g., UFS, Ext2, XFS, DOS, 1S09660,...
« Transparent handling of network file systems

— E.g., NFS, AFS, CODA
» File-based interface to arbitrary device drivers (/dev)
» File-based interface to kernel data structures (/proc)
* Provides an indirection layer for system calls

— File operation table set up at file open time

— Points to actual handling code for particular type

— Further file operations redirected to those functions

The file system independent code deals
with vfs and vnodes

VFS FS

— ——> ynode — finode

File system
File Descriptor) dependent
Tables Open File Table code sw

2]

VFS Interface

« Reference

— S.R. Kleiman., "Vnodes: An Architecture for Multiple File System
Types in Sun Unix," USENIX Association: Summer Conference
Proceedings, Atlanta, 1986

— Linux and OS/161 differ slightly, but the principles are the same

* Two major data types
— VFS
+ Represents all file system types

« Contains pointers to functions to manipulate each file system as a whole (e.g.
mount, unmount)

~ Form a standard interface to the file system

— Vnode
+ Represents a file (inode) in the underlying filesystem
« Points to the real inode

« Contains pointers to functions to manipulate files/inodes (e.g. open, close, read,
write,...)

10

Vfs and Vnode Structures

struct vnode

* size
Generic - uid, gid
(FS-independent)

« ctime, atime, mtime

fields .
fs_data =
vnode ops
FS-specific
fields

ext2fs _read
ext2fs_write “\

« Block group number

FS-specific + Data block list

implementation of
vnode operations

Vfs and Vnode Structures

struct vfs .
Generic / * Block size
(FS-independent) S MERID e

fields
fs_data
vfs ops
FS-specific
fields

ext2_unmount
ext2_getroot \\

« i-nodes per group

IFEHEEEiie - Superblock address

implementation of
FS operations

11

12

3/1/2021

A

The 0S161’s file system type
Represents interface to a mounted filesystem

struct fs {

look at 0S/161’s VFS

Force the
filesystem to
flush its content

to disk

Retrieve the
int (*f£s_sync) (struct fs *); volume name

const char

* (*fs_getvolname) (struct fs *);

Retrieve the vnode
associated with the

struct vnode *(*fs_getroot) (struct fs *);

Vnode

int vn_refcount;

Count the
number of
“references”
to this vnode Lock for mutual
exclusive
struct vnode { acoess fo
counts

struct spinlock vn_countlock;k
struct fs *vn_fs;

-

void *vn_data;

Pointer to FS

int (*£s_unmount) (struct fs *); : - B
! ro0t of the —_— Pointer to FS specific containing
‘ filesystem vnode data (e.g. in- the vnode
void *fs_data; memory copy of
Yi Unmount the filesystem inode)
Note: mount called via
- ey b const struct vnode ops *vn_ops;
Private file system -
o vfs_mount . N
specific data }; Array of pointers
to functions
operating on
13 B UNSW vnodes 14 UNSW
struct vnode_ops { int (*vop creat) (struct vnode *di
R e . . i vop_cre: ruct vno ir,
unsigned long vop_magic; /* should always be VOP_MAGIC */ Lonst char *neme. imt excl,
i . s . . struct vnode **result);
int (*vop_eachopen) (struct vnode *object, int flags_from_open); int (*vop_symlink) (struct vnode *dir,
int (*vop_reclaim) (struct vnode *vnode) ; const char *contents, const char *name);
int (*vop_mkdir) (struct vnode *parentdir,
const char *name) ;
int (*vop_read) (struct vnode *file, struct uio *uio); int (*vop_link) (struct vnode *dir
int (*vop_readlink) (struct vnode *link, struct uio *uio); . const char *name, struct vnode *file);
int (*vop_getdirentry) (struct vnode *dir, struct uwio *uio); int (*vop_remove) (struct vnode *dir,
int (*vop_write) (struct vnode *file, struct uio *uio); . . i const char d“a'l‘g).'
int (*vop_ioctl) (struct vnode *object, int op, userptr_t data); int (*vop_rmdiz) (struct vnode “dir,
int (*vop_ioc bject, P, userptr_ ; const char *name) ;
int (*vop_stat) (struct vnode *object, struct stat *statbuf);
int (*vop_gettype) (struct vnode *object, int *result); int (*vop_rename) (struct vnode *vnl, const char *namel,
int (*vop_isseekable) (struct vnode *object, off t pos); - struct vnode *vn2, const char *name2) ;
int (*vop_fsync) (struct vnode *object);
int (*vop_mmap) (struct vnode *file /* add stuff */); . .
int (*vop_truncate) (struct vnode *file, off_t len); int (*vop_lookup) (struct vnode *dir,
int (*vop namefile) (struct vnode *file, struct uio *uio); . r *pathname, struct vnode **result);
- int (*vop_lookparent) (struct vnode *dir,
char *pathname, struct vnode **result,
char *buf, size_t len);
}i
15 FUNsw 16 FEUNSW

15

16

int

Vnode Ops

*Note that most operations are on vnodes. How do
we operate on file names?

—Higher level APl on names that uses the internal VOP_*
functions

vfs_open(char *path, int openflags, mode_t mode, struct vnode **ret);

void vfs_close(struct vnode *vn);

vEs_readlink (char *path, struct uio *data);
vEs_symlink (const char *contents, char *path);
vEs_mkdir(char *path) ;

vEs_link(char *oldpath, char *newpath);
vEs_remove (char *path);

vEs_rmdir(char *path);

vEs_rename (char *oldpath, char *newpath);

vfs_chdir(char *path);
vfs_getcwd (struct uio *buf);

Example: 0S/161 emufs vnode ops

valid vnode ops table */

emufs_eachopen,
emufs_reclaim,

NOTDIR, /*

NOTDIR, /* link */

emufs_read,

emufs_stat,

18

NOTDIR, /* creat */
symlink */
NOTDIR, /* mkdir */

/* .

* Function table for emufs emufs_file gettype,
files. emufs_tryseek,

*/ emufs_£fsync,

static const struct vnode_ops UNIMP, /* mmap */
emufs_fileops = { emufs_truncate,
VOP_MAGIC, /* mark this a NOTDIR, /* namefile */

NOTDIR, /* remove */

NOTDIR, /* readlink */ NOTDIR, /* rmdir */
NOTDIR, /* getdirentry */ NOTDIR, /* rename */
emufs_write,

emufs_ioctl, NOTDIR, /* lookup */

NOTDIR, /* lookparent */

INSW

17

18

3/1/2021

File Descriptor & Open File Tables

Application

FD table
OF table
VFS
FS
Buffer cache

Disk scheduler

Device driver

|
|
|

Motivation

System call interface:

Application

fd = open(“file”,..);

read (£d,..) ;write (£d,..) ; lseek (£d,..) ; FD table

close (£d) ; OF table
VFS
FS

Buffer cache

VFS interface:

Disk scheduler

vnode = vfs_open(“file”,..);

Device driver

vop_read (vnode,uio) ;
vop_write (vnode,uio);
vop_close (vnode) ;

sw sw

19 20
File Descriptors An Option?
* File descriptors _ *Use vnode numbers as file descriptors and

— Each open file has a file descriptor add a file pointer to the vnode

— Read/Write/lseek/.... use them to specify which file to

operate on.

- State associated with a file descriptor «Problems

— File pointer

« Determines where in the file the next read or write is _What,happ,ens when we concurrently open the
performed same file twice?
— Mode *We should get two separate file descriptors and file
« Was the file opened read-only, etc.... pointers....
21 22
An Option? Issues
Array of Inodes
fd in RAM fd

+Single global open — *File descriptor 1 is —
file array stdout
—fd is an index into the fo —Stdout is fo
array i-ptr | ——— {nodd sconsole for some processes V-ptrl——— Vnodd

—Entries contain file
pointer and pointer to a
vnode

«A file for others

*Entry 1 needs to be
different per process!

23

24

3/1/2021

Per-process File Descriptor Array
*Each process has its P1 fd -
own open file array L

—Contains fp, v-ptr etc. fp

—Fd 1 can point to any
vnode for each process —

V-ptr| ——— nodd

Issue

*Fork
—Fork defines that the child shares

P1 fd]
-Dup2 —

the file pointer with the parent

—Also defines the file descriptors
share the file pointer

*With per-process table, we L
can only have independent]

V-ptr| ——— bnodd

(console, log file). nodd file pointers node
P2 fd —Even when accessing the same P2 fd
| L file | L
fp fp
v-ptr v-ptr
25 B UNSW 26 B UNSW
25 26
Per-Process fd table with global open file table Per-Process fd table with global open file table
*Per-process file descriptor . H
array P1fd Used by L|nu>l< and P1fd
—Contains pointers to open file most other Unix
table entry H
) (— — operating systems (I —
*Open file table array ofotr = f ofotr = f
—Contain entries with a fp and otptr P otptr P
pointer to an vnode. v-ptr ode v-ptr] Unode
*Provides L L1
—Shared file pointers if required — T — T
—Independentfile pointers if lofotr| P Vnode lofotr| P node
required P2 fd |orptn V-ptr P2 fd |ofptr) V-ptr|
*Example:
—All three fd’s refer to the same — —
file, two share a file pointer, one ofptr ofptr
has an independent file pointer]]
Per-process Per-process
File D iptor L___| : File D iptor L___| :
" foblos. Oen File T9hle g Unsw " foblos. Open Pl Tghle s unsw
27 28
Buffer Cache
Buffer
Application
FD table Buffer:
OF table .
VES —Temporary storage used when transferring data
Fs between two entities
Bufor cache *Especially when the entities work at different rates
Disk sohodulor *Or when the unit of transfer is incompatible
Device driver *Example: between application program and disk
sw 30 [B UNsw

29

30

3/1/2021

Application
Program

Buffering Disk Blocks

Buffers
in Kernel
RAM

Transfer of
arbitrarily
sized regions
of file

-

«Allow applications to work with
arbitrarily sized region of a file
—However, apps can still optimise for
a particular block size

Transfer of 4 10

whole
blocks 1 1

12|13 7
14
5 15

16| 6

Buffering Disk Blocks

*Writes can return immediately
after copying to kernel buffer

Buffers —Avoids waiting until write to disk is
Application . complete
Program in Kernel W_‘: e <eheduled in th
—Write is scheduled in the
RAM background
Transfer of
arbitrarily
sized regions Tr?:(f:; of 4 10
of file blocks 11
” 12[13] 7
L 14
- 5 15
16| 6

31 32
Buffering Disk Blocks Cache
«Can implement read-ahead by
pre-loading next block on disk into
— Buffers kernel buffer *Cache:
pplication) _ . . . " .
Program '”gﬁme' Jvoids having to wait unti next read —Fast storage used to temporarily hold data to
- speed up repeated access to the data
it *Example: Main memory can cache disk blocks
. . Transfer of 4 10
sized regions [whole
of file || blocks 11
| “] 12[13] 7
| || 14
—) 15
— L] 16/ 6
Disk 33 Funsw 1 B uwsw
33 34
Caching Disk Blocks Buffering and caching are related
+*On access
Cached -Before loading block from disk, check if it
blocks in s in cache first *Data is read into buffer; an extra independent
Application Kernel +Avoids disk accesses cache co WOUld be WaSterl
Program RAM +Can optimise for repeated access for py
~ single or several processes +After use, block should be cached
Transfer of f
sivary o) *Future access may hit cached copy
L S s BV *Cache utilises unused kernel memory space;
| “] 12[13| 7 —may have to shrink, depending on memory demand
M || 14
— 5 15

16| 6

35

36

3/1/2021

Unix Buffer Cache

On read
—Hash the device#, block#
—Check if match in buffer

Free List Polnters
Hash Polnters

cache Device List
—Yes, simply use in-memory e e
copy

—No, follow the collision chain

—If not found, we load block D
from disk into buffer cache o (-

Free List
Polnter

ot

Replacement

*What happens when the buffer
cache is full and we need to read
another block into memory?

—We must choose an existing entry to replace

—Need a policy to choose a victim
«Can use First-in First-out
*Least Recently Used, or others.

~Timestamps required for LRU implementation

« However, is strict LRU what we want?

37

38

File System Consistency

*File data is expected to survive

+Strict LRU could keep modified critical data
in memory forever if it is frequently used.

File System Consistency

*Generally, cached disk blocks are prioritised in
terms of how critical they are to file system
consistency

—Directory blocks, inode blocks if lost can corrupt entire
filesystem

*E.g. imagine losing the root directory

*These blocks are usually scheduled for immediate write to disk
—Data blocks if lost corrupt only the file that they are
associated with

*These blocks are only scheduled for write back to disk periodically

«In UNIX, flushd (flush daemon) flushes all modified blocks to disk
every 30 seconds

39

File System Consistency

*Alternatively, use a write-through cache
—All modified blocks are written immediately to disk

—Generates much more disk traffic
—Temporary files written back
—Multiple updates not combined

—Used by DOS

*Gave okay consistency when
»Floppies were removed from drives
»Users were constantly resetting (or crashing) their machines

—Still used, e.g. USB storage devices

41

40

