Log Structured File Systems

THE UNIVERSITY OF 1
NEW SOUTH WALES
L

Learning Outcomes

* An understanding of the performance of Inode-
based files systems when writing small files.

» An understanding of how a log structured file
system can improve performance, and increase
reliability via improved consistency guarantees
without the need for file system checkers.

* An understanding of “cleaning” and how it might
detract from performance.

THE UNIVERSITY OF 2
NEW SOUTH WALES
L

“The Design and Implementation of a
Log-Structured File System”
Mendel Rosenblum and John K. Ousterhout

ACM Transactions on Computer Systems,
Vol 10, No. 1, February 1992, Pages 26-52

THE UNIVERSITY OF 3
NEW SOUTH WALES
L

L
4

Original Motivating
Observations
* Memory size is growing at a rapid rate

= Growing proportion of file system reads
will be satisfied by file system buffer cache

= Writes will increasingly dominate reads

THE UNIVERSITY OF 4
NEW SOUTH WALES

Motivating Observations

» Creation/Modification/Deletion of small files form the majority of a
typical workload
» Workload poorly supported by traditional Inode-based file system
(e.g. BSD FFS, ext2fs)
— Example: create 1k file results in: 2 writes to the file inode, 1 write to
data block, 1 write to directory data block, 1 write to directory inode
= 5 small writes scattered within group
— Synchronous writes (write-through caching) of metadata and
directories make it worse
« Each operation will wait for disk write to complete.
» Write performance of small files dominated by cost of metadata

writes

Group Data
]S;llg:l: Descrip- | Block];E(If; I{,:ﬁ: Data blocks
tors Bitmap P
m THE UNIVERSITY OF 5
NEW SOUTH WALES
L
5

Motivating Observations

» Consistency checking required for ungraceful
shutdown due to potential for sequence of
updates to have only partially completed.

» File system consistency checkers are time
consuming for large disks.

» Unsatisfactory boot times where consistency
checking is required.

THE UNIVERSITY OF 6
NEW SOUTH WALES

=
6

Basic Idea!!! Example
» Buffer sequence of updates in memory
and write all updates sequentially to disk in
one go.
==
E Disk E
7 8
Advantages How to locate i-nodes?

* Writes are now sequential
— Good performance for many small writes

* How do we now find I-nodes that are scattered
around the disk?

= Keep a map of inode locations
— Inode map is also “logged”
— Assumption is I-node map is heavily cached and
rarely results in extra disk accesses
— To find block in the I-node map, use two fixed
locations on the disk contain the address of blocks of
the inode map

« Two copies of the inode map addresses so we can recover if
error during updating map.

THE UNIVERSITY OF 9
NEW SOUTH WALES
L

THE UNIVERSITY OF 10
NEW SOUTH WALES
L

Implementing Stable Storage

ECC
Disk °™ Disk Disk Disk Disk
12 N1 2 12 12 12
7 ?
% New| New| / (New| New|
% %
CraTSh Cr:sh Crafsh Cra?sh Crafsh
(a) (b) ©) (d (e)

» Use two disks to implement stable storage
— Problem is when a write (update) corrupts old version,
without completing write of new version
— Solution: Write to one disk first, then write to second after
completion of first

LFS versus FFS

» Comparison of creating two small files

i'? filed file2

LT N

i 17

Sprite LFS

Inode map

Block key: Inode I Directory D Data

THE UNIVERSITY OF 11
NEW SOUTH WALES
e

filel file2 dirt Gz UnixFFS

THE UNIVERSITY OF 12
NEW SOUTH WALES
e

Issue
Disks are Finite in Size

* File system “cleaner” runs in background
— Recovers blocks that are no longer in use by
consulting current inode map
» |dentifies unreachable blocks
— Compacts remaining blocks on disk to form
contiguous segments for improved write
performance

Cleaner

» Uses a combination of threaded log and
copy and compact

Block Key: Threaded log Copy and Compact
% Old log end New I Old &
Old data block & ew log end d log end New log end
New data block I:I II.I
Previously deleted D '

E THE U\JI\/’I RSITY OF 13 E THE U\JI\/’I RSITY OF 14
NEW SOUTH WALES NEW SOUTH WALES
L L
13 14
Issue e
Reliability
Recovery
* File system is check-pointed regularly which saves Updated data is written to the log, not in
— A pointer to the current head of the log lace
— The current Inode Map blocks p)
+ On recovery, simply restart from previous checkpoint. * Reduces chance of corrupting existing
— Can scan forward in log and recover any updates written after data
previous checkpoint ' .
— Write updates to log (no update in place), so previous checkpoint — Old data in log always safe.
always consistent — Crashes only affect recent data
= * As opposedto updating (and corupting) the root
\ directory.
Checkpoint
ﬁ THE UNIVERSITY OF Location 15 ﬁ THE UNIVERSITY OF 16
NEW SOUTH WALES NEW SOUTH WALES
L L
15 16
Performance LFS a clear winner?
Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
. ; Sara Mcmains and Venk;ba Padmanabhan .
° Comparlson between LFS File System Logging Versus Clustering: A Performance Comparison’
and SunOS FS s Mo - Authors involved in BSD-LFS
—_] Files/sec (measured) .
(éreadteth1 000(9 1delle)s V';;' """"""""""""""" e —log structured file system for BSD 4.4
— Rea em (In oraer BT . . .
140 —enable direct comparison with BSD-FFS
— Delete them 5 .) : "
. « including recent clustering additions
» Order of magnitude v a Importantly, a critical examination of
improvement in N - portantly,
performance for small “ cleaning overhead
writes |

© Create Read Delete
10000 1K file access
17

THE UNIVERSITY OF
NEW SOUTH WALES
e

THE UNIVERSITY OF
NEW SOUTH WALES
e

Clustering

THE UNIVERSITY OF 19
NEW SOUTH WALES
L

Original Sprite-LFS Benchmarks
Small file

1200

1000

800

600

Files per second

400

[

o _,p ZI: Tl
* T Blimill]
Create Read Delete

Sprite-LFS M SunOSFFS [BSD-FFS-m8r2

BSD-LFS H BSDFFS-mir2
THE UNIVERSITY OF 20
NEW SOUTH WALES

L

Large File Performance
100 Meqg file

* Benchmarks

1. Create the file by sequentially writing 8 KB
units.

Read the file sequentially in 8 KB units.

Sl

Re-read the file sequentially in 8 KB units

Write 100 KB of data randomly in 8 KB units.
Read 100 KB of data randomly in 8 KB units.

THE UNIVERSITY OF 21
NEW SOUTH WALES
L

Large File Performance
100 Meq file

Writes
effectively
sequential

Read-ahead
improve
performance
sequential
reads

seqwite | seqread | randwie randread | resed

(@ spriteLFS W sun0s-FFS [BsD-FrS-mar2
@espirs B ssp-Frsmi2

Read-ahead
hurts
performance for
random

THE UNIVERSITY OF 22
NEW SOUTH WALES
L

Observations

» Read-ahead helps in BSD sequential
case, but hurts in random.

* Read ahead algorithm is triggered on
successful read-ahead on sequential,
turned off on a miss. Worst case for 8K
reads with 4K blocks.

Create performance

* 32 megabytes of data overall,
made up of how ever many

files required to make 32

megs give the file size on the 3 25
x-axis g 20
. I P U EL
« When the speed of meta- £ B T
data operations dominates B 1077
(for small files less than a few g’ 05 —
blocks or 64 KB), LFS L e —
performance is anywhere y 16 568 W68 BEEE

from 4 to 10 times better than
FFS. File Size (in KB)

+ As the write bandwidth of the
system becomes the limiting
factor, the two systems
perform comparably.

LFs — FFS-m8r0 * FFS-m8r2

THE UNIVERSITY OF 23
NEW SOUTH WALES
e

THE UNIVERSITY OF 24
NEW SOUTH WALES
e

Read Performance
* Read: Eachfile is g 28 =
o . & 207 :vs‘F: P
read in its creation 2 AN
order. g 10 —ﬁ/f—
é” 0.5 —|#
'E 0.0 T T T TTT
1 16 256 4096 65536
File Size (in KB)
LFS — FFS-m8r0 ** FFS-m8r2
B L »
L
25

Observations

* For files of less than 64 KB, performance
is comparable in all the file systems.

+ At 64 KB, files are composed of multiple
clusters and seek penalties rise.

* In the range between 64 KB and 2 MB,
LFS performance dominates

— because FFS is seeking between cylinder
groups to distribute data evenly.

THE UNIVERSITY OF 26
NEW SOUTH WALES
L

Write Performance
» Each file is rewritten in its
creation order.

» The main difference
between the overwrite test 25
and the create test is that 20

FFS need not perform 5 —
1.0 T—7 ’#

synchronous disk
0.5

operations and LFS must
invalidate dead blocks as
they are overwritten. 0.0 L S A e
+ As aresult, the 1 16 256 4096 65536
performance of the two
systems is closer with LFS
dominating for files of up to
256 KB and FFS LFs
dominating for larger file

Throughput (in MB/sec)

File Size (in KB)

— FFS-m8r0 * FFS-m8r2

sizes.

THE UNIVERSITY OF 27
NEW SOUTH WALES
L

~ Delete Performance
» All the files are deleted
« Delete performance is a
measure of metadata % joad
update performance and 8 o
the asynchronous S s
operation of LFS gives it g 2O L -
an order of magnitude g ¢ i
performance advantage g g ——
over FFS. i 16 256 4096 65536
* As thefile size increases, e i
the synchronous writes
become less significant
and LFS provides a factor £ FROFIAG, o BESmAR
of 3-4 better performance.
E THE UNIVERSITY OF 28
NEW SOUTH WALES
L
28

Transaction processing performance.
* Arandom access
benchmark

« Without cleaner, LFS
performs better due to 4500
sequential writes. 7

* When the cleaner runs, b
its performance is 0

comparable to FFS. 500

@
iammin

Transactions per secend

20,00
0.00

4000 5000 €000 7000 8000 9000

Disk utiization (percent)

© LFS wickeaner = LFS wiou cleaner LS

THE UNIVERSITY OF 29
NEW SOUTH WALES
e

LFS not a clear winner

* When LFS cleaner overhead is ignored, and FFS runs on a new,
unfragmented file system, each file system has regions of performance
dominance.

— LFSis an order of magnitude faster on small file creates and deletes.
— The systems are comparable on creates of large files (one-half megabyte or more).
— The systems are comparable on reads of files less than 64 kilobytes.

— LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS
is comparable.

— LFS write performance is superior for files of 256 kilobytes or less.
— FFS write performance is superior for files larger than 256 kilobytes.

+ Cleaning overhead can degrade LFS performance by more than 34% in a
transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.

THE UNIVERSITY OF 30
NEW SOUTH WALES
e

Take-away

* When meta-data operation are the bottle
neck, LFS wins.

* Cleaning over-head degrades LFS
performance significantly as utilisation
rises.

* LFS Ideas live on in more recent
“snapshot’-base file systems.

—E.g., ZFS and BTRFS
— Garbage is a feature ©

THE UNIVERSITY OF 31
NEW SOUTH WALES

L
31

Journaling file systems

» Hybrid of
— |-node based file system
— Log structured file system (journal)
* Two variations
— log only meta-data to journal (default)
— log-all to journal
» Need to write-twice (i.e. copy from journal to i-
node based files)
* Example — ext3
— Main advantage is guaranteed meta-data consistency

THE UNIVERSITY OF 32
NEW SOUTH WALES

-
32

