/O Management
Software

Chapter 5

| THE UNIVERSITY OF
NEW SOUTH WALES

Learning Outcomes

* An understanding of the structure of I/O related
software, including interrupt handers.

* An appreciation of the issues surrounding long
running interrupt handlers, blocking, and
deferred interrupt handling.

* An understanding of I/O buffering and buffering's
relationship to a producer-consumer problem.

LR THE UNIVERSITY OF 2
NEW SOUTH WALES

Operating System Design
Issues

« Efficiency

— Most I/O devices slow compared to main memory
(and the CPU)

« Use of multiprogramming allows for some processes to be
waiting on I/O while another process executes

« Often I/O still cannot keep up with processor speed
« Swapping may used to bring in additional Ready processes
— More |/O operations

* Optimise 1/O efficiency — especially Disk &
Network 1/O

bl
[T
*

™ THE UNIVERSITY OF 3
NEW SOUTH WALES

Operating System Design
Issues

* The quest for generality/uniformity:

— ldeally, handle all I/O devices in the same way
* Both in the OS and in user applications

— Problem:
 Diversity of I/O devices

« Especially, different access methods (random access versus
stream based) as well as vastly different data rates.

» Generality often compromises efficiency!

— Hide most of the details of device I/O in lower-level
routines so that processes and upper levels see
devices in general terms such as read, write, open,
close.

/O Software Layers

User-level |/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Layers of the I/O Software System

Interrupt Handlers

* Interrupt handlers

— Can execute at (almost) any time
 Raise (complex) concurrency issues in the kernel

« Can propagate to userspace (signals, upcalls), causing similar
Issues
» Generally structured so I/O operations block until interrupts

notify them of completion
— kern/dev/lamebus/lhd.c

Interrupt Handler Example

static int
lhd io(struct device *d,
struct uio *uio)

{

/* Loop over all the sectors
* we were asked to do. */
for (i=0; i<len; i++) {
/* Wait until nobody else
* is using the device. */
P(1lh->1h_clear);

e

/* Tell it what sector we want... */
lhd _wreg(lh, LHD REG_SECT, sector+i);
/* and start the operation. */
lhd _wreg(lh, LHD REG_STAT, statval);
/* Now wait until the interrupt

* handler tells us we're done. */
P(lh->1h_done); @
/* Get the result value

* saved by the interrupt handler. */
result = lh->1h result;

lhd iodone(struct 1lhd_softc *1lh, int err)
{
lh->1h result
V(1h->1h_done);

err;

}

void
lhd _irqg(void *vlh)
{

val = 1lhd_rdreg(lh, LHD_REG_STAT);

switch (val & LHD_STATEMASK) {
case LHD_ IDLE:
case LHD WORKING:
break;
case LHD OK:
case LHD INVSECT:
case LHD MEDIA:
lhd wreg(lh, LHD REG_STAT, 0);
lhd _iodone(1lh,
lhd code_to _errno(lh, val));
break;

}
}

Interrupt Handler Steps

Save Registers not already saved by hardware interrupt
mechanism

(Optionally) set up context for interrupt service procedure

Typically, handler runs in the context of the currently running process
No expensive context switch

Set up stack for interrupt service procedure
Handler usually runs on the kernel stack of current process
Or “nests” if already in kernel mode running on kernel stack

Ack/Mask interrupt controller, re-enable other interrupts
Implies potential for interrupt nesting.

Interrupt Handler Steps

* Run interrupt service procedure
— Acknowledges interrupt at device level

— Figures out what caused the interrupt

. Received a network packet, disk read finished, UART transmit queue
empty

— If needed, it signals blocked device driver

 In some cases, will have woken up a higher priority
blocked thread

— Choose newly woken thread to schedule next.
— Set up MMU context for process to run next
— What if we are nested?

« Load new/original process' registers
 Re-enable interrupt; Start running the new process

Sleeping in Interrupts

* An interrupt generally has no context (runs on current kernel stack)
— Unfair to sleep on interrupted process (deadlock possible)
— Where to get context for long running operation?
— What goes into the ready queue?

 What to do?
— Top and Bottom Half
— Linux implements with tasklets and workqueues

— Generically, in-kernel thread(s) handle long running kernel
operations.

L] THE UNIVERSITY OF 10
%8| NEW SOUTH WALES

Top/Half Bottom Half

Higher Software
Layers

Bottom Half

=
CRL] THE UNIVERSITY OF
8l NEW SOUTH WALES

 Top Half

— Interrupt handler
— remains short

 Bottom half

— |s preemptable by top half
(interrupts)

— performs deferred work (e.g. IP
stack processing)

— |Is checked prior to every kernel exit
— signals blocked processes/threads to
continue
« Enables low interrupt latency

 Bottom half can’t block
11

Stack Usage

Kernel Stack

1. Upper software 1

2. Interrupt
processing 2 -

(interrupts B

disabled) 3
3. Deferred

processing

(interrupt re-
enabled)

4. Interrupt while in
bottom half

bl
*

™ THE UNIVERSITY OF
NEW SOUTH WALES

<

Deferring Work on In-kernel
Threads

* |nterrupt stack
— handler defers work /

onto in-kernel thread

* In-kernel thread
handles deferred
work (DW)

— Scheduled normally
— Can block

« Both low interrupt
latency and blocking H

operations
Normal

process/thread
stack 13

v

b}
[]
2

0] THE UNIVERSITY OF
@ NEW SOUTH WALES

Buffering

14

Device-Independent I/O Software

User process

’ 7
User

Kernel
space

Modem Modem
(a) (b)

(a) Unbuffered input

(b) Buffering in user space

(c) Single buffering in the kernel followed by copying to user
space

(

d) Double buffering in the kernel

15

No Buffering

 Process must read/write a device a
byte/word at a time

— Each individual system call adds significant
overhead
— Process must what until each 1/O is complete

* Blocking/interrupt/waking adds to overhead.

* Many short runs of a process is inefficient (poor
CPU cache temporal locality)

JEL| THE UNIVERSITY OF 16

User-level Buffering

* Process specifies a memory buffer that incoming
data is placed in until it fills

— Filling can be done by interrupt service routine

— Only a single system call, and block/wakeup per data
buffer

 Much more efficient

Operating System User Process

H
In
VO Device
A Y,

EL. THE UNIVERSITY OF 17

||
]

User-level Buffering

* |ssues
— What happens if buffer is paged out to disk

» Could lose data while unavailable buffer is paged in

* Could lock buffer in memory (needed for DMA), however
many processes doing I/O reduce RAM available for paging.
Can cause deadlock as RAM is limited resource

— Consider write case

 \When is buffer available for re-use?

— Either process must block until potential slow device drains
buffer

— or deal with asynchronous signals indicating buffer drained

- THE UNIVERSITY OF .

Single Buffer

« Operating system assigns a buffer in kernel's
memory for an |/O request

 |n a stream-oriented scenario
— Used a line at time

— User input from a terminal is one line at a time with
carriage return signaling the end of the line

— Qutput to the terminal is one line at a time

Operating System User Process
H
In Move
0O Device >
\ /
=¥
e [HIE UNIVERSI (b} Single buffering 19
il NEW SOUTH

e
%

Single Buffer

* Block-oriented

— Input transfers made to buffer
— Block copied to user space when needed
— Another block is written into the buffer

« Read ahead

Operating System
£ 2

In

LUser Process

IO Devlce I-|

L% 7

(b) Single buffering

Move ‘ \

20

Single Buffer

— User process can process one block of data
while next block is read in

— Swapping can occur since input is taking
place in system memory, not user memory

— Operating system keeps track of assignment
of system buffers to user processes

Operating System User Process
H

1 Mo
IO Device = 4 i

L% 7

e
%

=8 E UNIVERS . : 21
B NEW SOUTH (b) Single buifering

Single Buffer Speed Up

 Assume
— T is transfer time for a block from device
— C is computation time to process incoming block
— M s time to copy kernel buffer to user buffer

« Computation and transfer can be done in parallel
« Speed up with buffering

/ No Buffering
Cost

I'+C
maX(T, C) M — Bﬁ]ipegrliig

Cost

Z2
L] THE UNIVERSITY OF 22
NEW SOUTH WALES

Single Buffer

* What happens if kernel buffer is full
— the user buffer is swapped out, or

— The application is slow to process previous
buffer

and more data is received???

=> \We start to lose characters or drop network
packets

CEL| THE UNIVERSITY OF 23
NEW SOUTH WALES

Double Buffer

» Use two system buffers instead of one

* A process can transfer data to or from one
buffer while the operating system empties
or fills the other buffer

Operating System User Process

I Mo i I
VO Device = @ - <

(c) Double buffering

THE UNIVERSITY OF 24
B NEW SOUTH WALES

i
[
2

Double Buffer Speed Up

« Computation and Memory copy can be done in
parallel with transfer

« Speed up with double buffering
‘///_ Nosgﬂﬁnng

T'+C
Double
max(7,C+ M)~ | suferns
ost
* Usually Mis much less than T giving a
favourable result
-m- THE UNIVERSITY OF 25

NEW SOUTH WALES

Double Buffer

* May be insufficient for really bursty traffic

— Lots of application writes between long
periods of computation

— Long periods of application computation while
receiving data

— Might want to read-ahead more than a single
block for disk

=
|

1 THE UNIVERSITY OF 26
NEW SOUTH WALES

%

Circular Buffer

 More than two buffers are used

 Each individual buffer is one unit in a circular
buffer

« Used when |/O operation must keep up with

Process
Operaling System User Process
I Mo
IO Device 1 e >
(d) Circular buffering
m— THE UNIVERSITY OF 27

NEW SOUTH WALES

Important Note

* Notice that buffering, double buffering, and
circular buffering are all

Bounded-Buffer
Producer-Consumer
Problems

28

|s Buffering Always Good?

I'+C I'+C
max(7,C)+ M max(T,C+ M)
Single Double

« Can M be similar or greater than C or 77

50 THE UNIVERSITY OF 2
NEW SOUTH WALES

Buffering in Fast Networks

ster process
@

A
5
1

A
4
—

J y
User
space L @
) 1
Y
C1
12

Kernel
space

3

Metwork

-~

— controller
[3

-

g

Metwork

Networking may involve many copies

Copying reduces performance

— Especially if copy costs are similar to or greater than computation or
transfer costs

Super-fast networks put significant effort into achieving zero-copy
Buffering also increases latency

T THE UNIVERSITY OF 30
=8| NEW SOUTH WALES

/O Software Summary

/O
Layer / reply I/O functions
/O User processes # Make I/O call; format I/O; spooling
request | 1‘

I
+ Device-independent

?

Naming, protection, blocking, buffering, allocation

I software
Y

Device drivers

Set up device registers; check status

Interrupt handlers

?

Wake up driver when 1/O completed

Hardware

?

Perform |/O operation

Layers of the I/O system and the main
functions of each layer

B
||
i

T THE UNIVERSITY OF
NEW SOUTH WALES

31

