3/18/2019

UNIX storage stack
Application
Syscall interface: FD table
creat OF table
File system internals open VFS Operating
Tanenbaum, Chapter 4 read FS S
; ystem
wElEe Buffer cache
Disk scheduler
COM P3231 Device driver
Operating Systems
1 Bunsw 2 Bunsw
1 2
UNIX storage stack UNIX storage stack
o o
Hard disk platters: FD table Disk controller: FD table
tracks
sectors OF table Hides disk geometry, OIF i
VFS bad sectors VFS
FS Exposes linear FS
Buffer cache sequence of blocks Buffer cache
Disk scheduler Disk scheduler
Device driver Device driver
3 Bunsw 4 Fusw
3 4
UNIX storage stack UNIX storage stack
/—\ Application Application
Device driver: ED table File system: ED table
Hides device-specific OF table Hides physical location OF table
protocol VFS of data on the disk VFS
Exposes block-device FS ES
Interface (linear Buffer cache Exposes: directory Buffer cache
sequence of blocks) Disk scheduler hierarchy, symbolic file Disk scheduler
- - names, random-access - -
Device driver files, protection Device driver
5 EuNsw 6 HUNSW

3/18/2019

UNIX storage stack

Application

Optimisations:

FD table

Keep recently accessed OftEhlo
disk blocks in memory VFS
FS

Buffer cache
Disk scheduler
Device driver

Schedule disk accesses
from multiple processes {
for performance and
fairness

UNIX storage stack

Application

Virtual FS:
FD table
Unified interface to OF table
multiple FSs VFS
Fs |] Fs2

Buffer cache
Disk scheduler Disk scheduler
Device driver Device driver

7 BuNsw
7 8
UNIX storage stack UNIX storage stack
File desctriptor and m E
Open file tables: FD table FD table
Keep track of files QI ighite Qg
opened by user-level VFS VFS
processes FS FS
T e Buffer cache Buffer cache
atches syscall intertrace a :
to VFS Interface Disk scheduler Disk scheduler
Device driver Device driver
o FuNsw 10 FUNSW
9 10
Architecture of the OS storage stack Some popular file systems
.- . FATI6 . HFs+
[Whilelsystem: ‘ FD table « FAT32 + UFS2
- Hides physical location OF table + NTFS + ZFS
of data on the disk VFS « Ext2 + JFS
. i . Ext3 . OCFS
* Exposes: directory Buffer cache o
nerachy 0ol e ook -
' files, pFotection “/ Bevies ehivar * ReiserFS « JFFS2
\ J - XFS - EXFAT
+ 1SO9660 « UBIFS
Question: why are there so many?
11 B UNSw 12 BuNsw
11 12

3/18/2019

Why are there so many?

« Different physical nature of storage devices

— Ext3 is optimised for magnetic disks

— JFFS2 is optimised for flash memory devices

— 1S09660 is optimised for CDROM
« Different storage capacities

— FAT16 does not support drives >2GB

— FAT32 becomes inefficient on drives >32GB

— ZFS, Btrfs is designed to scale to multi-TB disk arrays
« Different CPU and memory requirements

— FAT16 is not suitable for modern PCs but is a good fit for many
embedded devices

« Proprietary standards
— NTFS may be a nice FS, but its specification is closed

Assumptions

* In this lecture we focus on file systems for magnetic
disks
— Seek time
* ~15ms worst case
— Rotational delay
« 8ms worst case for 7200rpm drive
— For comparison, disk-to-buffer transfer speed of a modern
drive is ~10us per 4K block.

» Conclusion: keep blocks that are likely to be accessed
together close to each other

13 Fusw 14 Funsw
13 14
Implementing a file system . .
File Allocation Methods
* The FS must map symbolic file -—Fioo‘dimcmw « Afile is divided into “blocks”
names into a collection of block User .
addresses a (direcmry — the unit of transfer to storage
« The FS must keep track of « Given the logical blocks of a file, what method is used
— which blocks belong to which to choose were to put the blocks on disk?
files. / Yl
Files
— in what order the blocks form §
the file we [1]2]3]4]5]6]7]8
— which blocks are free for iFiIe system
allocation
+ Given a logical region of a file, the Disk
FS must track the corresponding
block(s) on disk.
— Stored in file system metadata
15 FUNSW 16 G UNSW
15 16

Contiguous Allocation

+ Easy bookkeeping (need to keep track of the starting block
and length of the file)

+ Increases performance for sequential operations
x Need the maximum size for the file at the time of creation

« As files are deleted, free space becomes divided into
many small chunks (external fragmentation)

Example: 1SO 9660 (CDROM FS)

metadata -

17 B UNSW

Dynamic Allocation Strategies

— Disk space allocated in portions as needed
— Allocation occurs in fixed-size blocks

+ No external fragmentation

+ Does not require pre-allocating disk space

« Partially filled blocks (internal fragmentation)
« File blocks are scattered across the disk

» Complex metadata management (maintain the list of blocks for each
file)

17

18

3/18/2019

External and internal fragmentation Dynamic allocation: Linked list allocation

External fragmentation

» Each block contains a pointer to the next block in the
— The space wasted external to the allocated memory chain. Free blocks are also linked in a chain.
regions

+ Only single metadata entry per file
— Memory space exists to satisfy a request but it is unusable + Best for sequential file;
as it is not contiguous

* Internal fragmentation

— The space wasted internal to the allocated memory
regions

— Allocated memory may be slightly larger than requested

memory; this size difference is wasted memory internal to
a partition

Question: What are the downsides?

19 Funsw 20 Funsw
19 20
Linked list allocation Dynamic Allocation: File allocation table
» Keep a map of the entire FS in a separate table

* Each block contains a pointer to the next block in the — Atable entry contains the number of the next block of the file

chain. Free blocks are also linked in a chain. — The last block in a file and empty blocks are marked using

+ Only single metadata entry per file reserved values

+ Best for sequential file:

* The table is stored on the disk and is replicated in memory

* Random access is fast (,feﬂiﬂwa ithe in-memory list)

x Poor for random access

« Blocks end up scattered across the disk due to free list
eventually being randomised

- @ UNSW Question: any issues with this design’?22 @ UNSW
21 22
File allocation table File allocation table disk layout
* Issues
— Requires a lot of memory for large disks + Examples
« 200GB =200*10"6 * 1K-blocks ==> - FAT12, FAT16, FAT32
200*1076 FAT entries = 800MB
— Free block lookup is slow ‘ ‘
T L _ _
reserved FAT1 FAT2 data blocks
23 Funsw 2 FuNsw
23

24

3/18/2019

Dynamical Allocation: inode-based FS structure

 Idea: separate table (index-node or i-node) for each file.
— Only keep table for open files in memory
— Fast random access

» The most popular FS structure today

i-node implementation issues

* i-nodes occupy one or several disk areas

-

i-nodes data blocks

* i-nodes are allocated dynamically, hence free-space
management is required for i-nodes

— Use fixed-size i-nodes to simplify dynamic allocation

— Reserve the last i-node entry for a pointer to an extension
i-node

25

26

i-node implementation issues

File Attributes

Address of disk block 0

i-node implementation issues

* Free-space management
— Approach 1: linked list of free blocks
— Approach 2: keep bitmaps of free blocks and free i-nodes

—
Address of disk block 1 |—— a2 230 &5 Toor10T101101100
T 136 162 B oronoiIoN
210 612 857 1010110101101
Address of disk block 3 [—— 97 342 422 0110110110111011
Address of disk block 4 [—» 4 214 140 10110110111
Address of disk block 5 83 180 223 1101101010001111
21 664 223 0000111011010111
Addrass of disk block & — 48 218 160 1011101101101
Address of disk block 7 |——s 262 320 126 1100100011101
Address of block of pointers
ek 310) 4 SToTeTIoN
Ooﬂ{a\ﬂll‘g 518 482 1 1101111011011
additional
dsk adereases o osilvt A
27 Eunsw 28 FuNsw
— —
27 28
Free block list Bit tables

+ List of all unallocated blocks
» Background jobs can re-order list for better contiguity
» Store in free blocks themselves

— Does not reduce disk capacity

» Only one block of pointers need be kept in the main
memory

* Individual bits in a bit vector flags used/free blocks
+ 16GB disk with 512-byte blocks --> 4MB table
* May be too large to hold in main memory
» Expensive to search
— Optimisations possible, e.g. a two level table

» Concentrating (de)allocations in a portion of the bitmap
has desirable effect of concentrating access

» Simple to find contiguous free space

29

30

3/18/2019

Implementing directories Fixed-size vs variable-size directory entries
+ Directories are stored like normal files » Fixed-size directory entries

— directory entries are contained inside data blocks — Either too small
+ The FS assigns special meaning to the content of these + Example: DOS 8+3 characters

files — Or waste too much space

— adirectory file is a list of directory entries » Example: 255 characters per file name

— a directory entry contains file name, attributes, and the file » Variable-size directory entries

i-node number — Freeing variable length entries can create external
* maps human-oriented file name to a system-oriented fragmentation in directory blocks
name

« Can compact when block is in RAM

31 FUuNsw 32 BuNsw
31 32
Searching Directory Listings Storing file attributes
» Locating a file in a directory : ; /:I
. games | aftributes games |
— Linear scan mall | atiibutes mal | 1 —{]
« Implement a directory cache in software to speed-up news | attiibutes news | [—
search work | aftributes work | N [:I
— Hash lookup ™
— B-tree (100's of thousands entries) e o e b
attributes
(a)disk addresses and attributes in directory entry
—FAT
(b) directory in which each entry just refers to an i-node
—UNIX
33 B UNsw 34 B UNSW
33 34

Trade-off in FS block size

« File systems deal with 2 types of blocks
— Disk blocks or sectors (usually 512 bytes)
— File system blocks 512 * 2N bytes
— What is the optimal N?

« Larger blocks require less FS metadata
« Smaller blocks waste less disk space (less internal fragmentation)
« Sequential Access
— The larger the block size, the fewer 1/0 operations required
« Random Access
— The larger the block size, the more unrelated data loaded.
— Spatial locality of access improves the situation
« Choosing an appropriate block size is a compromise

35 I UNSW

35

