3/10/2019

Scheduler Activations

Learning Outcomes

* An understanding of hybrid approaches to thread
implementation

« A high-level understanding of scheduler activations, and how
they overcome the limitations of user-level and kernel-level
threads.

Including some slides modified from Raymond Namyst, U. Bordeaux UNSW UNSW
User-level Threads

* Thomas Anderson, Brian Bershad, Edward Lazowska, and User Mode

Henry Levy. Scheduler Activations: Effective Kernel Support

for the User-Level management of Parallelism. ACM Trans.

on Computer Systems 10(1), February 1992, pp. 53-79.

Scheduler
Kernel Mode
UNSW UNSW
User-level Threads Kernel-Level Threads
. . User Mod

vFast thread management (creation, deletion, seriode

switching, synchronisation...)
xBlocking blocks all threads in a process

« Syscalls
* Page faults
%xNo thread-level parallelism on multiprocessor
\ N L=
Scheduler
Kernel Mode
UNSW

3/10/2019

Kernel-level Threads

xSlow thread management (creation, deletion,
switching, synchronisation...)

v'Thread-level parallelism on multiprocessor

Performance

Table I: Thread Operation Lam@m,)

opaz) Ultrix

Operation Eﬂstm /frends processes

Null Fork 34 948 11300
Signal-Wait 37 41 1840
User-level Kernel-level
— ernel-level
threads

Hybrid Multithreading

User Mode

Scheduler Scheduler Scheduler

Scheduler
Kernel Mode

Hybrid Multithreading

v/Can get real thread parallelism on multiprocessor
%xBlocking still a problem!!!

Scheduler Activations

« First proposed by [Anderson et al. 91]

* Idea: Both schedulers co-operate
* User scheduler uses system calls
* Kernel scheduler uses upcalls!

* Two important concepts

* Upcalls
* Notify the user-level of kernel scheduling events

* Activations
* A new structure to support upcalls and execution

* approximately a kernel thread

« As many running activations as (allocated) processors
* Kernel controls activation creation and destruction

Upcalls

/

3/10/2019

Scheduler Activations
CPU time wasted

syscall

* Instead of

User Space

-____...__’_—\4

Kernel Space Megt_ m%?rugt[/
Hardware B /

 ...rather use the following scheme:
U usgd \

| W i /1]
\ E %2”‘:3" é ‘ éuycall
] |

User Space

Kernel Space

Hardware

Upcalls to User-level scheduler

* New (processor #)
* Allocated a new virtual CPU
* Can schedule a user-level thread
« Preempted (activation # and its machine state)
* Deallocated a virtual CPU
n schedule one less thread
* Blocked (activation #)
* Notifies thread has blocked
an-schedule another user-level thread

Working principle

* Blocking syscall scenario on 2 processors

Process

Working principle

* Blocking syscall scenario on 2 processors

Process

3/10/2019

Working principle

* Blocking syscall scenario on 2 processors

Process

$ S

Working principle

* Blocking syscall scenario on 2 processors

Process

$ S

Working principle

* Blocking syscall scenario on 2 processors

Preempt

Working principle
* Blocking syscall scenario on 2 processors

Process

S S

Working principle

* Blocking syscall scenario on 2 processors

Blocking syscall

Working principle
* Blocking syscall scenario on 2 processors

Process

3/10/2019

Working principle

* Blocking syscall scenario on 2 processors

1/0 completion

Working principle

* Blocking syscall scenario on 2 processors

Process

Working principle

* Blocking syscall scenario on 2 processors

Process

Scheduler Activations

*Thread management at user-level

* Fast
* Real thread parallelism via activations

* Number of activations (virtual CPUs) can equal CPUs
*Blocking (syscall or page fault) creates new

activation

« User-level scheduler can pick new runnable thread.
* Fewer stacks in kernel

« Blocked activations + number of virtual CPUs

Performance

Table IV. Thread Operation Latencies (psec)

FastThreads on FastThreads on
Operation Topaz Threads Scheduler Activations Tnpﬂ%@es Ultrix processes
Null Fork 34 37 048 11300
Signal-Wait 37 (42) /441 / 1840
~ % N

Performance
(compute-bound)
-0~ Topaz threads

—& orig FastThrds
¥ new FastThrds

speedup

1 2 3 4 5 6

number of processors

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.

3/10/2019

Performance
(1/0 Bound)

(sec.)

execution time

Fig. 3. Execution

1007
& Topaz threads
80 1 —* orig FastThrds
—* new FastThrds
60
40
201
0 T T T T T T

100% 90% 80% 70% 60%

time of N-Body application versus amount of available memory, 6

% available memory

50% 40%

Adoption

* Adopters
« BSD “Kernel Scheduled Entities”
* Reverted back to kernel threads
* Variants in Resez&hgg% K42, Barrelfish
« Digital UNIX
e Solaris & —
*Mach
* Windows 64-bit User Mode Scheduling (

«Linux -> kernel threads —

UNSW

processors.

Time Time
£ UssrPogram e — i
r s
w (& F {7
Runtime 4] A } {
syen | & 2 &
B [CE)
Operating | [® (A) ‘
System Add Add A's thread
Kemel Processor | Processor has blocked
Processors i . q
Time User Program User Program T
User-Level #N\ @@)
Runtime fll E’n %
Sysiem) L
= -
«© (D)
Operating
$item
Kemel
- X))

Fig. 1. Example: 1/0 request,/completion

UNSW

