Scheduler Activations

Including some slides modified from Raymond Namyst, U. Bordeaux UNSW
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Learning Outcomes

* An understanding of hybrid approaches to thread
implementation

* A high-level understanding of scheduler activations, and how
they overcome the limitations of user-level and kernel-level
threads.
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* Thomas Anderson, Brian Bershad, Edward Lazowska, and
Henry Levy. Scheduler Activations: Effective Kernel Support
for the User-Level management of Parallelism. ACM Trans.
on Computer Systems 10(1), February 1992, pp. 53-79.
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User-level Threads

v'Fast thread management (creation, deletion,
switching, synchronisation...)

xBlocking blocks all threads in a process
* Syscalls
* Page faults

xNo thread-level parallelism on multiprocessor
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Kernel-Level Threads
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Kernel-level Threads

xSlow thread management (creation, deletion,
switching, synchronisation...)

cking blocks only the appropriate thread in a
__process

v'Thread-level parallelism on multiprocessor

/
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Performance

Table - Thread Operation La%m )

opaz ) Ultrix

Operation F“Stm /f]'en{lﬁ

processes
Null Fork 34 043 11300
Signal-Wait 37 441 1840
User-level
Kernel-level
threads
threads
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Hybrid Multithreading
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Hybrid Multithreading

v'Can get real thread parallelism on multiprocessor
xBlocking still a problem!!!
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Scheduler Activations

* First proposed by [Anderson et al. 91]

* |dea: Both schedulers co-operate

» User scheduler uses system calls
» Kernel scheduler uses upcalls!

* Two important concepts

* Upcalls
* Notify the user-level of kernel scheduling events
* Activations

* A new structure to support upcalls and execution

* approximately a kernel thread
* As many running activations as (allocated) processors
» Kernel controls activation creation and destruction



Upcalls
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Scheduler Activations

* Instead of CPU time wasted

User Space

Kernel Space

Hardware

» ...rather use the followmg scheme:

Hardware
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Upcalls to User-level scheduler

(processor #)
e Allocated a new virtual CPU
* Can schedule a user-level thread

(activation # and its machine state)
e Deallocated a virtual CPU
n schedule one less thread

(activation #)
* Notifies thread has blocked
e another user-level thread

activation # and its machine state)
* Notifies a thread has become runnable
aCided to continue current or unblocked thread
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Working principle

* Blocking syscall scenario on 2 processors

Process
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Working principle

* Blocking syscall scenario on 2 processors
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Working principle

* Blocking syscall scenario on 2 processors

Blocking syscall

YYYYYY



Working principle
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Working principle

* Blocking syscall scenario on 2 processors

|/O completion
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Working principle

e Blocking syscall scenario on 2 processors

Process
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Scheduler Activations

* Thread management at user-level
* Fast

* Real thread parallelism via activations
* Number of activations (virtual CPUs) can equal CPUs

* Blocking (syscall or page fault) creates new
activation

* User-level scheduler can pick new runnable thread.

* Fewer stacks in kernel
* Blocked activations + number of virtual CPUs
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Performance

Table IV. Thread Operation Latencies (jisec.)

FastThreads on FasiThreads on
Operation Topaz Threid's Scheduler _-'Lﬂi\'n Hons Tnpn}tms Ulirix processes
Null Fork 34 37 048 11300
Signal-Wait 37 42 441 1840
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Fig. 3. Execution time of N-Body application versus amount of available

processors.
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Adoption

* Adopters
* BSD “Kernel Scheduled Entities”

* Reverted back to kernel threads %

* Variants in Resez@__()ﬁ:7 K42, Barrelfish

* Digital UNIX
e Solaris & —
* Mach

* Windows 64-bit User Mode Scheduling (
*Linux -> kernel threads "
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