Scheduler Activations

Including some slides modified from Raymond Namyst, U. Bordeaux UNSW

SSSSSS

Learning Outcomes

* An understanding of hybrid approaches to thread
implementation

* A high-level understanding of scheduler activations, and how
they overcome the limitations of user-level and kernel-level
threads.

UNSW

* Thomas Anderson, Brian Bershad, Edward Lazowska, and
Henry Levy. Scheduler Activations: Effective Kernel Support
for the User-Level management of Parallelism. ACM Trans.
on Computer Systems 10(1), February 1992, pp. 53-79.

UNSW

User-level Threads

User Mode

g ¢

< | Scheduler |

\ Process

N———

Kernel Mode

1

Scheduler

[Scheduler |

rocess C /

Scheduler

= UNsw

User-level Threads

v'Fast thread management (creation, deletion,
switching, synchronisation...)

xBlocking blocks all threads in a process
* Syscalls
* Page faults

xNo thread-level parallelism on multiprocessor

UNSW

Kernel-Level Threads

User Mode

ﬁi\ s l\ s ll\
JLLUAEYgS)

\ Proces'B /

Scheduler

Kernel Mode

UNSW

Kernel-level Threads

xSlow thread management (creation, deletion,
switching, synchronisation...)

cking blocks only the appropriate thread in a
__process

v'Thread-level parallelism on multiprocessor

/

UNSW

Performance

Table - Thread Operation La%m)

opaz) Ultrix

Operation F“Stm /f]'en{lﬁ

processes
Null Fork 34 043 11300
Signal-Wait 37 441 1840
User-level
Kernel-level
threads
threads

UNoW

Hybrid Multithreading

User Mode

[Scheduler)

K Proces

Kernel Mode

[Scheduler)

\ Proce! B j
l

[Scheduler]

%

Hybrid Multithreading

v'Can get real thread parallelism on multiprocessor
xBlocking still a problem!!!

UNSW

Scheduler Activations

* First proposed by [Anderson et al. 91]

* |dea: Both schedulers co-operate

» User scheduler uses system calls
» Kernel scheduler uses upcalls!

* Two important concepts

* Upcalls
* Notify the user-level of kernel scheduling events
* Activations

* A new structure to support upcalls and execution

* approximately a kernel thread
* As many running activations as (allocated) processors
» Kernel controls activation creation and destruction

Upcalls

L/

UNSW

Scheduler Activations

* Instead of CPU time wasted

User Space

Kernel Space

Hardware

» ...rather use the followmg scheme:

Hardware

& UNsw

Upcalls to User-level scheduler

(processor #)
e Allocated a new virtual CPU
* Can schedule a user-level thread

(activation # and its machine state)
e Deallocated a virtual CPU
n schedule one less thread

(activation #)
* Notifies thread has blocked
e another user-level thread

activation # and its machine state)
* Notifies a thread has become runnable
aCided to continue current or unblocked thread

UNSW

Working principle

* Blocking syscall scenario on 2 processors

Process

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

Process

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

Process

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

Process

¢ S

UNSW

Working principle

* Blocking syscall scenario on 2 processors

Preempt

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

Process

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

Blocking syscall

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

Process

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

|/O completion

YYYYYY

Working principle

* Blocking syscall scenario on 2 processors

Process

YYYYYY

Working principle

e Blocking syscall scenario on 2 processors

Process

%

YYYYYY

Scheduler Activations

* Thread management at user-level
* Fast

* Real thread parallelism via activations
* Number of activations (virtual CPUs) can equal CPUs

* Blocking (syscall or page fault) creates new
activation

* User-level scheduler can pick new runnable thread.

* Fewer stacks in kernel
* Blocked activations + number of virtual CPUs

UNSW

Performance

Table IV. Thread Operation Latencies (jisec.)

FastThreads on FasiThreads on
Operation Topaz Threid's Scheduler _-'Lﬂi\'n Hons Tnpn}tms Ulirix processes
Null Fork 34 37 048 11300
Signal-Wait 37 42 441 1840
UNSW

Performance
(compute-bound)

=0~ Topaz threads

5': & orig FastThrds
¥ new FastThrds
4-

5 37
o 1
o —N
Q, 27
m -
i
L
0" T T T T ;
8 2 3 4 5 6

number of processors

Performance
(1/0 Bound)

= Topaz threads
—& orig FastThrds
new FastThrds

1007
® 801
A

aq) -
- J
3}

o 40 7
)

.,,_I b
o "
2 20
(]'} -
-

2 0

Fig. 3. Execution time of N-Body application versus amount of available

processors.

1 N 1 i 1 ' 1 i i hd 1 i 1

100% 90% 80% 70% 60% 50% 40%

% avalilable memory

memory,

6

Adoption

* Adopters
* BSD “Kernel Scheduled Entities”

* Reverted back to kernel threads %

* Variants in Resez@__()ﬁ:7 K42, Barrelfish

* Digital UNIX
e Solaris & —
* Mach

* Windows 64-bit User Mode Scheduling (
*Linux -> kernel threads "

UNSW

Time User Program User Program T{..TE

13 fz:. f’iﬂ?

(B} (L)

User-Level
Runtime
System

B :
Operatng (A) (B) (A) |
System Add Add i A's thread
Kermnel Processor | Processor has blocked

; A
Prcuxssurs . E :I y
' S

B e e e e R e B

- DO oo I | 1 Derfophanl T4

User-Lewvel

Runtime
System

_ Ay B O T () (D)
Operating A's thread | |
System and B's :

Kemel thread can :
continue i

Fig. 1. Example: [/0 request /completion.

