
4/3/2017

1

File system internals
Tanenbaum, Chapter 4

COMP3231

Operating Systems

1

UNIX storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

Syscall interface:
creat

open
read

write
... } Operating

System

2

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Hard disk platters:

tracks

sectors

Application

UNIX storage stack

3

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Disk controller:

Hides disk geometry,

bad sectors

Exposes linear

sequence of blocks

0 N

Application

UNIX storage stack

4

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Device driver:

Hides device-specific

protocol

Exposes block-device

Interface (linear

sequence of blocks)

0 N

Application

UNIX storage stack

5

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File system:

Hides physical location

of data on the disk

Exposes: directory

hierarchy, symbolic file

names, random-access

files, protection

Application

UNIX storage stack

6

4/3/2017

2

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Optimisations:

Keep recently accessed

disk blocks in memory

Schedule disk accesses

from multiple processes

for performance and

fairness

Application

UNIX storage stack

7

Disk scheduler

FS

VFS

OF table

FD table

Device driver

Virtual FS:

Unified interface to

multiple FSs

Application

Disk scheduler

FS2

Device driver

Buffer cache

UNIX storage stack

8

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File desctriptor and

Open file tables:

Keep track of files

opened by user-level

processes

Implement semantics

of FS syscalls

Application

UNIX storage stack

9

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application

UNIX storage stack

10

11

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application

File system:

• Hides physical location

of data on the disk

• Exposes: directory

hierarchy, symbolic file

names, random-access

files, protection

12

Some popular file systems

• FAT16

• FAT32

• NTFS

• Ext2

• Ext3

• Ext4

• ReiserFS

• XFS

• ISO9660

• HFS+

• UFS2

• ZFS

• JFS

• OCFS

• Btrfs

• JFFS2

• ExFAT

• UBIFS

Question: why are there so many?

4/3/2017

3

13

Why are there so many?
• Different physical nature of storage devices

– Ext3 is optimised for magnetic disks

– JFFS2 is optimised for flash memory devices

– ISO9660 is optimised for CDROM

• Different storage capacities

– FAT16 does not support drives >2GB

– FAT32 becomes inefficient on drives >32GB

– ZFS, Btrfs is designed to scale to multi-TB disk arrays

• Different CPU and memory requirements

– FAT16 is not suitable for modern PCs but is a good fit for many

embedded devices

• Proprietary standards

– NTFS may be a nice FS, but its specification is closed

14

Assumptions

• In this lecture we focus on file systems for magnetic
disks

– Seek time

• ~15ms worst case

– Rotational delay

• 8ms worst case for 7200rpm drive

– For comparison, disk-to-buffer transfer speed of a modern

drive is ~10µs per 4K block.

• Conclusion: keep blocks that are likely to be accessed
together close to each other

15

Implementing a file system

• The FS must map symbolic file
names into a collection of block

addresses

• The FS must keep track of

– which blocks belong to which

files.

– in what order the blocks form

the file

– which blocks are free for

allocation

• Given a logical region of a file, the

FS must track the corresponding

block(s) on disk.

– Stored in file system metadata

4 7
8 2

5 1
6 3

File system

File Allocation Methods

• A file is divided into “blocks”

– the unit of transfer to storage

• Given the logical blocks of a file, what method is used to

choose were to put the blocks on disk?

16

1 2 3 4 5 6 7 8File

Disk

17

Contiguous Allocation

✔ Easy bookkeeping (need to keep track of the starting block

and length of the file)

✔ Increases performance for sequential operations

✗ Need the maximum size for the file at the time of creation

✗ As files are deleted, free space becomes divided into

many small chunks (external fragmentation)

Example: ISO 9660 (CDROM FS)

1 2 3 4 5 6 7 8

metadata

18

Dynamic Allocation Strategies

– Disk space allocated in portions as needed

– Allocation occurs in fixed-size blocks

✔ No external fragmentation

✔ Does not require pre-allocating disk space

✗ Partially filled blocks (internal fragmentation)

✗ File blocks are scattered across the disk

✗ Complex metadata management (maintain the list of blocks for each

file)

1
2
3
4
5
6
7
8

4/3/2017

4

19

External and internal fragmentation

• External fragmentation

– The space wasted external to the allocated memory

regions

– Memory space exists to satisfy a request but it is unusable

as it is not contiguous

• Internal fragmentation

– The space wasted internal to the allocated memory

regions

– Allocated memory may be slightly larger than requested

memory; this size difference is wasted memory internal to

a partition

20

Dynamic allocation: Linked list allocation

• Each block contains a pointer to the next block in the
chain. Free blocks are also linked in a chain.

✔ Only single metadata entry per file

✔ Best for sequential files

Question: What are the downsides?

1 4 2 3

21

Linked list allocation

• Each block contains a pointer to the next block in the
chain. Free blocks are also linked in a chain.

✔ Only single metadata entry per file

✔ Best for sequential files

✗ Poor for random access

✗ Blocks end up scattered across the disk due to free list

eventually being randomised

1 4 2 3

22

Dynamic Allocation: File allocation table

• Keep a map of the entire FS in a separate table

– A table entry contains the number of the next block of the file

– The last block in a file and empty blocks are marked using

reserved values

• The table is stored on the disk and is replicated in memory

• Random access is fast (following the in-memory list)

1 4 2 3

Question: any issues with this design?

23

File allocation table

• Issues

– Requires a lot of memory for large disks

• 200GB = 200*10^6 * 1K-blocks ==>

200*10^6 FAT entries = 800MB

– Free block lookup is slow

1 4 2 3

24

File allocation table disk layout

• Examples

– FAT12, FAT16, FAT32

reserved FAT1 FAT2 data blocks

4/3/2017

5

25

Dynamical Allocation: inode-based FS
structure

• Idea: separate table (index-node or i-node) for each file.

– Only keep table for open files in memory

– Fast random access

• The most popular FS structure today

1 4 2 3

26

i-node implementation issues

• i-nodes occupy one or several disk areas

• i-nodes are allocated dynamically, hence free-space

management is required for i-nodes

– Use fixed-size i-nodes to simplify dynamic allocation

– Reserve the last i-node entry for a pointer to an extension

i-node

i-nodes data blocks

27

i-node implementation issues

28

i-node implementation issues
• Free-space management

– Approach 1: linked list of free blocks

– Approach 2: keep bitmaps of free blocks and free i-nodes

29

Free block list

• List of all unallocated blocks

• Background jobs can re-order list for better contiguity

• Store in free blocks themselves

– Does not reduce disk capacity

• Only one block of pointers need be kept in the main

memory

30

Bit tables

• Individual bits in a bit vector flags used/free blocks

• 16GB disk with 512-byte blocks --> 4MB table

• May be too large to hold in main memory

• Expensive to search

– Optimisations possible, e.g. a two level table

• Concentrating (de)allocations in a portion of the bitmap
has desirable effect of concentrating access

• Simple to find contiguous free space

4/3/2017

6

31

Implementing directories

• Directories are stored like normal files

– directory entries are contained inside data blocks

• The FS assigns special meaning to the content of these

files

– a directory file is a list of directory entries

– a directory entry contains file name, attributes, and the file

i-node number

• maps human-oriented file name to a system-oriented

name

32

Fixed-size vs variable-size directory entries

• Fixed-size directory entries

– Either too small

• Example: DOS 8+3 characters

– Or waste too much space

• Example: 255 characters per file name

• Variable-size directory entries

– Freeing variable length entries can create external

fragmentation in directory blocks

• Can compact when block is in RAM

33

Searching Directory Listings

• Locating a file in a directory

– Linear scan

• Implement a directory cache in software to speed-up

search

– Hash lookup

– B-tree (100's of thousands entries)

34

Storing file attributes

(a)disk addresses and attributes in directory entry

–FAT

(b) directory in which each entry just refers to an i-node

–UNIX

35

Trade-off in FS block size

• Larger blocks require less FS metadata

• Smaller blocks waste less disk space (less internal fragmentation)

• Sequential Access

– The larger the block size, the fewer I/O operations required

• Random Access

– The larger the block size, the more unrelated data loaded.

– Spatial locality of access improves the situation

• Choosing an appropriate block size is a compromise

• File systems deal with 2 types of blocks

– Disk blocks or sectors (usually 512 bytes)

– File system blocks 512 * 2^N bytes

– What is the optimal N?

