File Management

Tanenbaum, Chapter 4

COMP3231 **Operating Systems**

Kevin Elphinstone

Outline

- •Files and directories from the programmer (and user) perspective
- •Files and directories internals the operating system perspective

A brief history of file systems

Early batch processing systems

- -No OS
- -I/O from/to punch cards
- -Tapes and drums for external storage, but no FS
- -Rudimentary library support for reading/writing tapes and

A brief history of file systems

- •The first file systems were singlelevel (everything in one directory)
- •Files were stored in contiguous
- -Maximal file size must be known in advance
- •Now you can edit a program and save it in a named file on the tape!

PDP-8 with DECTape [1965]

A brief history of file systems

- Time-sharing OSs
- -Required full-fledged file systems
- •MULTICS
- -Multilevel directory structure (keep files that belong to different users separately)
- -Access control lists
- -Symbolic links

Honeywell 6180 running MULTICS [1976]

A brief history of file systems

- •UNIX
- -Based on ideas from **MULTICS**
- -Simpler access control model
- -Everything is a file!

PDP-7

File Names

- File system must provide a convenient naming scheme
 - Textual Names
 - May have restrictions
 - Only certain characters
 - E.g. no '/' characters Limited length

 - Only certain format
 E.g DOS, 8 + 3
 - Case (in)sensitive
 - Names may obey conventions (.c files or C files)
 - Interpreted by tools (UNIX)
 - Interpreted by operating system (Windows)

File Structure Abstractions

Stream of Bytes

- · OS considers a file to be unstructured
- Simplifies file management for the OS
- Applications can impose their own structure
- Used by UNIX, Windows, most modern OSes

Records

- Collection of bytes treated as a unit
- Example: employee record
- Operations at the level of records (read_rec, write_rec)
- File is a collection of similar records
- OS can optimise operations on records

File Structure Abstractions

- •Tree of Records
- -Records of variable length
- -Each has an associated key
- -Record retrieval based on key
- -Used on some data processing systems (mainframes)
- ·Mostly incorporated into modern databases

File Types

- •Regular files
- Directories
- Device Files
 - -May be divided into
 - •Character Devices stream of bytes
 - Block Devices
- •Some systems distinguish between regular file types -ASCII text files, binary files

Typical File Operations Create Append Seek Get attributes Get attributes Fread Rename Write


```
An Example Program Using File System Calls
(2/2)

/* Open the input file and create the output file */
in_td = open(argv[1], O_RDONLY); /* open the source file */
if (in_td < 0) exit(2); /* if it cannot be opened, exit */
out_fd < creat(argv[2], OUTPUT_MODE); /* retale the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
    rd_count = read(in_td, buffer, BUF_SIZE); /* read a block of data */
    if (rd_count <= 0) break; /* if end of file or error, exit loop */
    wt_count = write(out_fd, buffer, rd_count); /* write data */
    if (wt_count <= 0) exit(4);
    /* Close the files */
    close(in_fd);
    close(out_fd);
    if (rd_count = 0) /* no error on last read */
    exit(0);
    else
    exit(5); /* error on last read */

**

**ITHE UNIVERSITY OF NEW SOUTH WALES*
```


File Organisation and Access Programmer's Perspective

- •Possible access patterns:
- -Read the whole file
- -Read individual blocks or records from a file
- -Read blocks or records preceding or following the current one
- -Retrieve a set of records
- -Write a whole file sequentially
- -Insert/delete/update records in a file
- -Update blocks in a file

Programmers are free to structure the file to suit the application.

19

Criteria for File Organization

Things to consider when designing file layout

- Rapid access
 - -Needed when accessing a single record
 - -Not needed for batch mode •read from start to finish
- ·Ease of update
- -File on CD-ROM will not be updated, so this is not a concern
- •Economy of storage
 - -Should be minimum redundancy in the data
 - -Redundancy can be used to speed access such as an index

20

File Directories

- •Provide mapping between file names and the files themselves
- Contain information about files
 - -Attributes
 - -Location
- -Ownership
- Directory itself is a file owned by the operating system

21

Hierarchical (Tree-Structured) Directory

- •Files can be located by following a path from the root, or master, directory down various branches
 - -This is the absolute pathname for the file
- •Can have several files with the same file name as long as they have unique path names

Current Working Directory

- •Always specifying the absolute pathname for a file is tedious!
- •Introduce the idea of a working directory
 - -Files are referenced relative to the working directory
- Example: cwd = /home/kevine.profile = /home/kevine/.profile

Relative and Absolute Pathnames

- Absolute pathname
- -A path specified from the root of the file system to the file
- •A Relative pathname
- -A pathname specified from the cwd
- •Note: '.' (dot) and '..' (dotdot) refer to current and parent directory

Example: cwd = /home/kevine

../../etc/passwd

/etc/passwd

../kevine/../../etc/passwd

Are all the same file

25

Typical Directory Operations

.Create

Readdir

.Delete

Rename

Opendir

Link

Closedir

Unlink

26

Nice properties of UNIX naming

- ·Simple, regular format
 - -Names referring to different servers, objects, etc., have the same syntax.
 - •Regular tools can be used where specialised tools would be otherwise be needed.
- Location independent
 - -Objects can be distributed or migrated, and continue with the same names.

Where is /home/kevine/.profile?

You only need to know the name!

27

An example of a bad naming convention

•From, Rob Pike and Peter Weinberger, "The Hideous Name", Bell Labs TR

UCBVAX::SYS\$DISK:[ROB.BIN]CAT_V.EXE;13

28

File Sharing

- In multiuser system, allow files to be shared among users
- •Two issues
 - -Access rights
 - -Management of simultaneous access

Access Rights

- None
- -User may not know of the existence of the file
- -User is not allowed to read the directory that includes the file
- Knowledge
- -User can only determine that the file exists and who its owner is

Access Rights

- Execution
 - -The user can load and execute a program but cannot copy it
- Reading
 - -The user can read the file for any purpose, including copying and execution
- Appending
 - -The user can add data to the file but cannot modify or delete any of the file's contents

31

33

Access Rights

- Updating
 - -The user can modify, deleted, and add to the file's data. This includes creating the file, rewriting it, and removing all or part of the data
- Changing protection
 - -User can change access rights granted to other users
- Deletion
 - -User can delete the file

32

Access Rights

- Owners
 - -Has all rights previously listed
 - -May grant rights to others using the following classes of users
 - Specific user
 - User groups
 - •All for public files

VERSITY OF UTH WALES

Case Study: UNIX Access Permissions

```
total 1704
drwxr-x-
drwxr-x---
              3 kevine
                         kevine
                                       4096 Oct 14 08:14 .
                                       4096 Oct 14 08:12 backup
drwxr-x---
              2 kevine
                         kevine
                                     141133 Oct 14 08:13 eniac3.jpg
                         kevine
-rw-r-
-rw-r----
              1 kevine
                         kevine
                                    1580544 Oct 14 08:13 wkl1.ppt
```

- First letter: file type
 - d for directories
 - for regular files
- •Three user categories
- **u**ser, **g**roup, and **o**ther THE UNIVERSITY OF NEW SOUTH WALES

34

UNIX Access Permissions

```
total 1704
                         kevine
drwxr-x---
              3 kevine
                                      4096 Oct 14 08:13 .
drwxr-x---
                                       4096 Oct 14 08:14 .
              3 kevine
                                      4096 Oct 14 08:12 backup
drwxr-x---
              2 kevine
                         kevine
                                    141133 Oct 14 08:13 eniac3.jpg
-rw-r--
              1 kevine
                                   1580544 Oct 14 08:13 wkl1.ppt
```

Three access rights per category

 ${\it r}$ ead, ${\it w}$ rite, and e ${\it x}$ ecute

drwxrwxrwx

group

THE UNIVERSITY OF NEW SOUTH WALES

THE UNIVERSITY OF

other

UNIX Access Permissions

```
total 1704
drwxr-x---
              3 kevine
                         kevine
                                       4096 Oct 14 08:13 .
drwxr-x---
                                       4096 Oct 14 08:14 .
              3 kevine
                         kevine
drwxr🔊--
              2 kevine
                         kevine
                                       4096 Oct 14 08:12 backup
                                    141133 Oct 14 08:13 eniac3.jpg
 -rw-r
              1 kevine
                         kevine
                                   1580544 Oct 14 08:13 wk11.ppt
```

- Execute permission for directory?
- -Permission to access files in the directory
- •To list a directory requires read permissions
- •What about drwxr-x-x?

UNIX Access Permissions

- Shortcoming
 - -The three user categories are rather coarse
- •Problematic example
 - -Joe owns file foo.bar
 - -Joe wishes to keep his file private
 •Inaccessible to the general public
 - -Joe wishes to give Bill read and write access
 - -Joe wishes to give Peter read-only access
 - -How????????

37

Simultaneous Access

- •Most OSes provide mechanisms for users to manage concurrent access to files
 - -Example: flock(), lockf(), system calls
- •Typically
 - -User may lock entire file when it is to be updated
 - -User may lock the individual records (i.e. ranges) during the update
- •Mutual exclusion and deadlock are issues for shared access

