Scheduler Activations

THE UNIVERSITY OF Including some slides modified from Raymond Namyst, U. Bordeaux
NEW SOUTH WALES

[i(xl = [

FIEE

(2

[

[y

ooo

[ajais

Learning Outcomes

* An understanding of hybrid approaches
to thread implementation

* A high-level understanding of scheduler
activations, and how they overcome the
limitations of user-level and kernel-level
threads.

« Thomas Anderson, Brian Bershad, Edward
Lazowska, and Henry Levy. Scheduler Activations:
Effective Kernel Support for the User-Level
management of Parallelism. ACM Trans. on
Computer Systems 10(1), February 1992, pp. 53-79.

B
CE] THE UNIVERSITY OF
8| NEW SOUTH WALES

(=== |
Ea
oy
[afayc
(o
[afajm
(o

User-level Threads

User Mode

4 N

s n

| Scheduler | | Scheduler | | Scheduler |

\ Process \ Process B / rocess C /

[Sche"duler J

Kernel Mode

LT THE UNIVERSITY OF
NEW SOUTH WALES

[|
=
(=
[
[
(=i
Loy o

User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

x Blocking blocks all threads in a process
— Syscalls
— Page faults

x No thread-level parallelism on multiprocessor

-- THE UNIVERSITY OF
NEW SOUTH WALES

[I
(= =l
(=
[
[
(=i
(=

Kernel-Level Threads

User Mode

L (1

\ Procesg B /

} Schiduler |

\ Proc

Kernel Mode

==
el THE UNIVERSITY OF
el NEW SOUTH WALES

(&)
R

(=== |
Ea
oy
[afayc
(o
[afajm
(o

Kernel-level Threads

x Slow thread management (creation, deletion,
switching, synchronisation...)

« System calls

v" Blocking blocks only the appropriate thread in
a process

v Thread-level parallelism on multiprocessor

- THE UNIVERSITY OF
NEW SOUTH WALES

Performance

Table I. Thread Operation Latencies (usec.)

Topaz Ultrix
Operation FastThreads threads processes
Null Fork 34 048 11300

441 1840

Signal-Wait

B!
L THE UNIVERSITY OF
@8 NCW SOUTH WALES

[I
(= =l
(2
[
(2 =y =)
[
(=

Hybrid Multithreading

User Mode
/l\’) il ’ \ ! ’
[Scheduler | (Scheduler | (Scheduler |

\ Procegs B /

/

[Sche"duler]

\ Proces ssC /

Kernel Mode

==
el THE UNIVERSITY OF
el NEW SOUTH WALES

Qe
R

[[
=

(2

(=i

(=i =

(=

(=i 3

Hybrid Multithreading

v"Can get real thread parallelism on
multiprocessor

x Blocking still a problem!!!

(=== |
Ea
oy
[afayc
(o
[afajm
(o

Scheduler Activations

- First proposed by [Anderson et al. 91]

 |dea: Both schedulers co-operate
« User scheduler uses system calls
« Kernel scheduler uses upcalls!

- Two important concepts

— Upcalls
- Notify the user-level of kernel scheduling events

— Activations
A new structure to support upcalls and execution
— approximately a kernel thread
- As many running activations as (allocated) processors
- Kernel controls activation creation and destruction

=5
g THE UNIVERSITY OF
NEW SOUTH WALES

=
B THE UNIVERSITY OF

THE UNIVERSITY OF
NEW SOUTH WALES

Pzl

Scheduler Activations
 |nstead of CPU time wasted

I _
User Space SV e e - -

Kernel Space

Hardware

- ...rather use the following scheme:
CPU used

User Space

Hardware

B
CE] THE UNIVERSITY OF
8| NEW SOUTH WALES

(= [
oy =
oy
[afayim
(o
[afajm
[oimy’e

Upcalls to User-level
scheduler

(processor #)
— Allocated a new virtual CPU
— (Can schedule a user-level thread

. (activation # and its machine state)
— Deallocated a virtual CPU
— (Can schedule one less thread
. (activation #)
— Notifies thread has blocked
— (Can schedule another user-level thread
. (activation # and its machine state)

— Notifies a thread has become runnable
— Must decided to continue current or unblocked thread

Working principle

« Blocking syscall scenario on 2 processors

Process

$15 88

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

Working principle

» Blocking syscall scenario on 2 processors

Process

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

Cse]
Working principle

« Blocking syscall scenario on 2 processors

Process

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

Cse]
Working principle

« Blocking syscall scenario on 2 processors

Process

¢

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

| Cselmmmm——
Working principle

« Blocking syscall scenario on 2 processors

Process

¢

Preempt

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Cse]
Working principle

« Blocking syscall scenario on 2 processors

Process

¢

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

| Cselmmmm——
Working principle

« Blocking syscall scenario on 2 processors

Blocking syscall

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Cse]
Working principle

* Blocking syscall scenario on 2 processors

Process

o

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

Working principle

* Blocking syscall scenario on 2 processors

I/0O completion

==
CEL] THE UNIVERSITY OF
@8 NCW SOUTH WALES

Cse]
Working principle

» Blocking syscall scenario on 2 processors

Process

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

Working principle

» Blocking syscall scenario on 2 processors

Process

%

==
CRL| THE UNIVERSITY OF
0 NEW SOUTH WALES

[l [
CEEE
T
(= =
I
(e
L= ==

Scheduler Activations

Thread management at user-level
— Fast

Real thread parallelism via activations

— Number of activations (virtual CPUs) can equal
CPUs

Blocking (syscall or page fault) creates new
activation

— User-level scheduler can pick new runnable
thread.

Fewer stacks in kernel
— Blocked activations + number of virtual CPUs

SET THE UNIVERSITY OF

NEW SOUTH WALES

[
(==
(= =y
[fx
(=i =
(=
(=

Performance

Table IV. Thread Operation Latencies (psec.)

FastThreads on FastThreads on
Operation Topaz Threads Scheduler Activations Topazthreads Ulirix processes

Null Fork 34 37 048 11300
Signal-Wait 37 42 441 1840

(=i |

=

(2

(=i

(=i =

(i

(=i 3

Performance
(compute-bound)

=0~ Topaz threads
& orig FastThrds
“¥ new FastThrds

b

speedup

1 2 3 4 5 ©

number of processors

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.

-- THE UNIVERSITY OF
meesil NEW SOUTH WALES

[,
R

[el= |
EEE
e
(ayal
(o
(&1
[=ei

Performance
(1/0 Bound)

1007
- . = Topaz threads
5 80 7 —4& orig FastThrds
- ¥ new FastThrds
a) -
© 60
-]
)
- 40
0
.,,_I -
= _
520
L -
o
¢ D I v 1 L | T T ¥ 1 T T T 1

100% 90% 80% 70% 60% 50% 40%

% avallable memory

Fig. 3. Execution time of N-Body application versus amount of available memory, 6
processors.,

(=== |
Ea
oy
(afay
(o
[afa);
(o

Adoption

« Adopters
— BSD “Kernel Scheduled Entities”

* Reverted back to kernel threads
— Variants in Research OSs: K42, Barrelfish
— Digital UNIX
— Solaris
— Mach
— Windows 7 64-bit User Mode Scheduling

* Linux, MacOS(?) -> kernel threads

B
CE] THE UNIVERSITY OF
8| NEW SOUTH WALES

(=i |
=
(2
(=i
(=i =
(i
or

Time
T1

User-Level §1)
Runtime 4
Aysiem

T Time
.) . User Program R

samEE

¢ Y) fﬂ_ﬁj 5{3‘}"'-"\)
(A) (B) : (B) (C)

Operating (A

System Add Add A's thread
Eermel Processor | Processor : has blocked

User Program

:
E :"‘ 1.".
Processors ! :
: S

Time | o UserProgam || UsrPogam o |p
User-Level a & f’-‘\ (214)|
Runtime

System '

Ay [BY JC [iD) (C)
Operating A'sthread | :
aysiem and B's
Kemel thread can | :
continue ;

Fig. 1. Example: [/0 request /completion.

THE UNIVERSITY OF
NEW SOUTH WALES

