
Scheduler Activations

Including some slides modified from Raymond Namyst, U. Bordeaux

Learning Outcomes

• An understanding of hybrid approaches
to thread implementation

• A high-level understanding of scheduler
activations, and how they overcome the
limitations of user-level and kernel-level
threads.

• Thomas Anderson, Brian Bershad, Edward

Lazowska, and Henry Levy. Scheduler Activations:

Effective Kernel Support for the User-Level

management of Parallelism. ACM Trans. on

Computer Systems 10(1), February 1992, pp. 53-79.

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

User-level Threads

�Fast thread management (creation, deletion,

switching, synchronisation…)

� Blocking blocks all threads in a process

– Syscalls

– Page faults

� No thread-level parallelism on multiprocessor

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Kernel-level Threads

� Slow thread management (creation, deletion,

switching, synchronisation…)

• System calls

�Blocking blocks only the appropriate thread in

a process

�Thread-level parallelism on multiprocessor

Performance

User-level

threads
Kernel-level

threads

Hybrid Multithreading

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

Hybrid Multithreading

�Can get real thread parallelism on
multiprocessor

� Blocking still a problem!!!

Scheduler Activations

• First proposed by [Anderson et al. 91]

• Idea: Both schedulers co-operate
• User scheduler uses system calls

• Kernel scheduler uses upcalls!

• Two important concepts
– Upcalls

• Notify the user-level of kernel scheduling events

– Activations

• A new structure to support upcalls and execution

– approximately a kernel thread

• As many running activations as (allocated) processors

• Kernel controls activation creation and destruction

Scheduler Activations

• Instead of

Kernel Space

User Space

Hardware

syscall

• …rather use the following scheme:

Kernel Space

User Space

Hardware

I/O request interrupt

upcall upcall

CPU time wasted

CPU used

• New (processor #)
– Allocated a new virtual CPU
– Can schedule a user-level thread

• Preempted (activation # and its machine state)
– Deallocated a virtual CPU
– Can schedule one less thread

• Blocked (activation #)
– Notifies thread has blocked
– Can schedule another user-level thread

• Unblocked (activation # and its machine state)
– Notifies a thread has become runnable
– Must decided to continue current or unblocked thread

Upcalls to User-level

scheduler

Working principle
• Blocking syscall scenario on 2 processors

Process

User scheduler

1 2 3 4

Working principle
• Blocking syscall scenario on 2 processors

Process

new A

1 2 3 4

A

Working principle

• Blocking syscall scenario on 2 processors

Process

new B

1 2 3 4

A B

Working principle
• Blocking syscall scenario on 2 processors

Process

1 2 3 4

A B

Working principle
• Blocking syscall scenario on 2 processors

Process

Preempt

Preempt A+B

1 2 3 4

A B

Working principle
• Blocking syscall scenario on 2 processors

Process

1 2 3 4

B

Working principle
• Blocking syscall scenario on 2 processors

Process

Blocking syscall

1 2 3 4

A B

Working principle

• Blocking syscall scenario on 2 processors

Process

New C + blocked B

1 2 3 4

A B C

Working principle
• Blocking syscall scenario on 2 processors

Process

I/O completion

1 2 3 4

A B C

Working principle

• Blocking syscall scenario on 2 processors

Process

Unblocked B + preempt C

1 2 3 4

A B C

Working principle
• Blocking syscall scenario on 2 processors

Process

1 2 3 4

A B C

Scheduler Activations

• Thread management at user-level
– Fast

• Real thread parallelism via activations
– Number of activations (virtual CPUs) can equal

CPUs

• Blocking (syscall or page fault) creates new
activation
– User-level scheduler can pick new runnable

thread.

• Fewer stacks in kernel
– Blocked activations + number of virtual CPUs

Performance

Performance

(compute-bound)

Performance

(I/O Bound)

Adoption

• Adopters

– BSD “Kernel Scheduled Entities”

• Reverted back to kernel threads

– Variants in Research OSs: K42, Barrelfish

– Digital UNIX

– Solaris

– Mach

– Windows 7 64-bit User Mode Scheduling

• Linux, MacOS(?) -> kernel threads

