Virtual Memory

THIL UNIVERSITY O1 1
NEW SOUTH WALES

=

Learning Outcomes

» An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.

THIL UNIVIRSITY O1 2
NEW SOUTH WALES

=

Memory Management Unit
(or TLB)

The CPU sends virtual
CPU addresses to the MMU

package

CPU
Memory M Disk
management emory controller
unit
X l 1 .

The MMU sends physical
addresses to the memory

us

The position and function of the MMU

2 T UNIVIRSITY O 3
NEW SOUTH WALES

Virtual Address

Space 15 Paging
i 13
+ Virtual Memory 12 « Physical Memory
— Divided into equal- 11 Divi .
sized pages - |V|ded.|nto
— A mapping is a 10 equal-sized
translation between 9 frames

* Apageandaframe g
« Apage and null
— Mappings defined at
runtime
« They can change
— Address space can
have holes
— Process does not
have to be
contiguous in
physical memory

Physical Address
Space 4

O = NWHUTO N
O= NDNWhou OV

f

Virtual Address

Typical Address

Space [K] L
T
Kernel ’/? SpaCe ayout
I Stack region is at top,
Stack ] and can grow down
- » Heap has free space to
Shared T/ grow up
Libraries I « Textis typically read-only
BSS ’\_ » Kernelis in a reserved,
(heap) | F | protected, shared region
E + 0-th page typically not
Data T\ used, why?
Text r/
@ T UEI;\/(IJEIT u\ 5

=

Programmer’s perspective:
logically present

System’s perspective: Not
mapped, data on disk

Virtual Address
Space

* A process may
be only partially
resident
— Allows OS to
store individual
pages on disk

— Saves memory
for infrequently
used data & code

» What happens if
we access non-

resident Physical Address
memory? Space
ez




Proc 1 Address Proc 2 Address

« An exception handled by the OS
» Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
L « Get an empty frame
« Load page from disk
« Update page (translation) table (enter frame #, set valid bit, etc.)
« Restart the faulting instruction

Space | g ! ! R Space
ey [ | £ . Page Faults
running ~—__| ! | + Referencing an invalid page triggers a page fault
! X
1
1

Physical
Address Spage [

lol==E [ [[1]]

Memory
Access
T UNIVERSITY O 7 T UNIVERSITY O 8
NEW SOUTH WALES L NEW SOUTH WALES
_____

Virtual Address -
Space 15 15
I Page o 1o Shared Pages
» Page table for 42 ] 12 » Private code and data <« Shared code
resident part of 11 R — Each process has own — Single copy of code
address space 10 |10 copy of code and data shared between all
9 9 — Code and data can processes executing it
8 | 8 appear anywhere in — Code must not be self
7 7 the address space modifying
6 | 6 — Code must appear at
5 13,5 same address in all
44 |4 processes
3 1] 3
2 12
1 Physical |7 | 1
B T sy o 0 Address Spacg | °0 Bl RS "
Proc 1 Address Proc 2 Address
— Space P S Space — —
— = Z — Page Table Structure
0] B X 5] » Page table is (logically) an array of 5]
Physical
| L\ e L frame numbers -
— 1 1 — Index by page number 1
| | | « Each page-table entry (PTE) alsohas |
- - - other bits -
— Two (or more) — | g::m;g Modified Present/absent |
[ processes [ I —
running the / '/ '/
|| same program [ 4 | % | | ‘ | ‘ Page frame number 4 |
5] and sharing ] ]
11 the text section — \ \ —
l l Referenced Protection l
2| Page Page [ Page [
B Table Table ] e Table 2|
L o — L oo _ —




PTE Attributes (bits)
» Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
» Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
+ Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
« Caching bit
— Useto jndicate processor should bypass the cache when
accessing memory
« Example: to access device registers or memory

o 111 UNIVIRSITY Ol 13
NEW SOUTH WALES

Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

o 11 UNIVIRSITY Ol 14

NEW SOUTH WALES

Virtual Memory Summary

virtual and physical mem chopped up in pages/frames

SR n—.
s [ELIP T PLTT =
Ve it

Fage

&

Presentiabsent J
bit

» programs use virtual
addresses e
« virtual to physical mapping "
by MMU ?
-first check if page present .
(present/absent bit)

-if yes: address in page table form :
MSBs in physical address 4
-if no: bring in the page from disk '

input
register|

T

|
G T UNIVIRSITY OI |
NEW SOUTH WALES ‘

Page Tables

* Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?

@ T1 I UNIVIRSITY O 16

NEW SOUTH WALES

Page Tables

* Assume we have
— 64-bit virtual address (humungous address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
« Main memory?

THIL UNIVIRSITY O1 17
NEW SOUTH WALES

Page Tables

» Page tables are implemented as data structures in main
memory

» Most processes do not use the full 4GB address space
- eg., 0.1 —1MBtext, 0.1 — 10 MB data, 0.1 MB stack

* We need a compact representation that does not waste
space
— But is still very fast to search

« Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

THIL UNIVIRSITY O1 18

NEW SOUTH WALES




page tables

Two-level Page
Table

e 2nd —_|evel
page tables T
representing 1023 ——
unmapped :
pages are not E“S,%[%'ﬁl
allocated -

— Null'in the
top-level
page table 1023

I,‘ill‘
N
4
e

canwsaa

IEERRRR

c-nwsO®

nnnnnn

i T UNIVIRSITY Of

NEW SOUTH WALES

Two-level Translation

Virtual Addre:

10bits [ 10bits [ 12

Frame # Offsct

J\

Main Memory

Example Translations

S T UNIVIRSITY O 21
NEW SOUTH WALES

Alternative: Inverted Page Table

PID VPN  offset

\;I:l

) Index| PID| VPN Jctrl| next

( Hash Anchor Table 0

(HAT) 1

N =

( Hasry g

\\T .
) 5 -

6

IPT: entry for each physical frame

2 T UNIVIRSITY O
NEW SOUTH WALES

Alternative: Inverted Page Table

PID VPN offset

0
—
) Index[ PID| VPN [ctrl] next
R‘ Hash Anchor Table 0
(HAT) 1
Gam 21 | OxiA 0x40C
r/ 0x40C| 0 | 0x5 0x0 ]
\ > 0x40D

\ ppn offset
0x40C

i T UNIVIRSITY Of

NEW SOUTH WALES

Inverted Page Table (IPT)

» “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).
 Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry
— If match, use the index value as frame # for

translation
— If no match, get next candidate IPT entry from chain
field
— If NULL chain entry = page fault
\=‘ T UNIVERSITY O 24

B NEW SOUTH WALES




Properties of IPTs

+ IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

» Need a separate data structure for non-resident pages

« Saves a vast amount of space (especially on 64-bit
systems)
» Used in some IBM and HP workstations

THIL UNIVERSITY O1 25
NEW SOUTH WALES

Given n processes

» how many page tables will the system
have for
—‘normal’ page tables
—inverted page tables?

THE UNIVERSITY O
NEW SOUTH WALES

=

Another look at sharing...

G T UNIVIRSITY OI

NEW SOUTH WALES

Proc 1 Address

Two (or more)
processes
running the

same program
and sharing

the text section

@ T1 I UNIVIRSITY O 28

NEW SOUTH WALES

=

VM Implementation Issue

* Problem:

— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=Intolerable performance impact!!

« Solution:

— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

THIL UNIVIRSITY O1 29
NEW SOUTH WALES

|| TLB operation

device!!!

Secondary
Virtual Address Main Memory Memory

Page # | Offset

Translation
Lookaside Buffer

TLB hit

Data
structure
PagefTable

in main
memory

TLB miss

Frame # Offset

Real Address N

@ Page fault




Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB

+ If matching PTE found (TLB hit), the address is
translated

» Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

THIL UNIVIRSITY O1 31
NEW SOUTH WALES

TLB properties

» Page table is (logically) an array of frame
numbers

» TLB holds a (recently used) subset of PT entries
— Each TLB entry must be identified (tagged) with the
page # it translates
— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W

e T! 1L UNIVIRSITY O 32
NEW SOUTH WALE

TLB properties
» TLB may or may not be under direct OS control

— Hardware-loaded TLB
* On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB
« Example: MIPS, Itanium (optionally)

» TLB size: typically 64-128 entries

» Can have separate TLBs for instruction fetch
and data access

» TLBs can also be used with inverted page tables
(and others)

THE UNIVIRSITY O 33
NEW SOUTH WALES

TLB and context switching

» TLB is a shared piece of hardware
» Normal page tables are per-process (address space)
» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate all
entries)
« high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB

« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits

UNIVIRSITY Ol 34
EW SOUTH WALES

TLB effect

+ Without TLB

— Average number of physical memory
references per virtual reference
=2
» With TLB (assume 99% hit ratio)
— Average number of physical memory
references per virtual reference

=.99"1+0.01*2
=1.01

THIL UNIVIRSITY O1 35
NEW SOUTH WALES

Recap - Simplified Components of

Virtual Address Spaces V M SySte Lage Tables for 3
(3 processes) processes
Frame Table
1 J
N »]
%@@\\\H\ﬂ I
A @ ‘
N h
CPU
TLB
2| 38
Frame Pool
Physical Memory
THIL UNIVIRSITY O1 36

NEW SOUTH WALES




Recap - Simplified Components of

VM System MIPS R3000 TLB

Virtual Address Spaces 1 12 il 6 5 0
(3 processes)
Inverted Page
— Table
/ ‘ i | P ‘ - |
q&‘\\\%& EntryHi Reqister (TLB key fields)

4 s
A @
N /v
CPU / 31 12 1 w8 8 7 0

a TLB ‘PFN |N |D |V|G|0 |
EntryLo Reqister (TLE data fields)
Frame Pool * N = Not cacheable + V=valid bit
+ D =Dirty = Write protect ~ * i“ e Z”“,'es ware throudh
. « Accessed via software throug
* G = Global (ignore ASID Cooprocessor 0 registers
L in lookup) — EntryHi and EntryLo
Physical Memory
m THE UNIVERSITY OI 37 m THE UNIVERSITY OI 38
NEW SOUTH WALES NEW SOUTH WALES
L oo L oo

OxfEEEEEEE

OxFFFFFFFF

R3000 Address

Space Layout  c.coosoono
» ksegO:

512 megabytes 0xA0000000
Fixed translation window to
physical memory

+ 0x80000000 - Ox9fffffff virtual =

R3000 Address
Space Layout o000

* kuseg:
- 2gigabytes 0xA000000
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)

0x80000000

0x00000000 - OxTffffff physical — user-mode and kernel mode 0x80000000
« TLB not used accessible

— Cacheable — Page size is 4K

— Only kernel-mode accessible

- Ulzlézltljy where the kernel code is TLB

P kuseg kuseg
g T UNIVIRSITY OF Physical Memory THE UNIVERSITY OF Physical Memory
Bl NEW SOUTH WALES 0%00000000 < s NEW SOUTH WALES XOOOOOOOO
OxFFFFFFFF oxeeeeeees

R3000 Address R3000 Address

Space Layout 00000 Space Layout  ecoooooos
— Switching processes + ksegl:
switches the translation 0xA000000 — 512 megabytes
(page table) for kuseg — Fixed translation window to
physical memory
+ 0xa0000000 - Oxbfffffff virtual =
0x80000000 000000000 - Ot physical 080040000
« TLB not used
— NOT cacheable
— Only kernel-mode accessible
— Where devices are accessed (and
Proc 1 Proc 2 Proc 3 boot ROM)
kuseg kuseg kuseg
0x00000000 _@ N SO A el Sy 0x00000000




