Memory Management

THIL UNIVIRSITY O1 1
NEW SOUTH WALES

=

Learning Outcomes

* Appreciate the need for memory managementin
operating systems, understand the limits of fixed
memory allocation schemes.

» Understand fragmentation in dynamic memory
allocation, and understand dynamic allocation
approaches.

» Understand how program memory addresses relate to
physical memory addresses, memory managementin
base-limit machines, and swapping

« An overview of virtual memory management, including
paging and segmentation.

THIL UNIVERSITY O1 2
NEW SOUTH WALES

=

Process

» One or more threads of execution
» Resources required for execution

— Memory (RAM)

» Program code (“text”)

« Data (initialised, uninitialised, stack)

« Buffers held in the kernel on behalf of the process
— Others

+ CPU time

« Files, disk space, printers, etc.

2 T UNIVIRSITY O 3
NEW SOUTH WALES

Some Goals of an Operating
System

» Maximise memory utilisation

» Maximise CPU utilization

» Minimise response time

+ Prioritise “important” processes

* Note: Conflicting goals = tradeoffs
— E.g. maximising CPU utilisation (by running
many processes) increases (degrades)
system response time.

THIE UNIVIRSITY O 4
3 <
< s NEW SOUTH WALES

mrrm

Memory Management

» Keeps track of what memory is in use and
what memory is free

+ Allocates free memory to process when
needed
— And deallocates it when they don'’t

* Manages the transfer of memory between
RAM and disk.

THIL UNIVIRSITY O1 5
NEW SOUTH WALES

=

Memory Hierarchy

* Ideally, programmers
want memory that is rrem.s p
— Fast Bty]
— Large
— Nonvolatile main memory

* Not possible
electronic disk

* Memory -
management B ik
coordinates how

memory hierarchy is w h
used.
— Focus usually on :—lc

RAM < Disk | magnetic tapes

THIL UNIVIRSITY O1 6
NEW SOUTH WALES

=

=

Memory Management

» Two broad classes of memory
management systems
— Those that transfer processes to and from
disk during execution.
* via swapping or paging
— Those that don’t
« Simple
+ Might find this scheme in an embedded device,
dumb phone, or smartcard.

THIL UNIVERSITY O1 7

NEW SOUTH WALES

=

Basic Memory Management
Monoprogramming without Swapping or Paging

OxFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0
(a) (b) (c)

Three simple ways of organizing memory
. @n operating system with one user process.

NEW SOUTH WALES

Monoprogramming

+ Okay if
— Only have one thing to do
— Memory available approximately equates to
memory required
+ Otherwise,
— Poor CPU utilisation in the presence of 1/0
waiting
— Poor memory utilisation with a varied job mix

2 T UNIVIRSITY O 9

NEW SOUTH WALES

Idea

 Subdivide memory and run more than one
process at once!!l!
— Multiprogramming, Multitasking

- 2 T UNIVIRSITY O 10
B NEW SOUTH WALES

Modeling Multiprogramming

20% /O wait

£ 100 —
3
s 50% 1/O wait
g 80 |- °
£
s 60 [80% 1/O wait
H
2 40 -
=
z 20
G

| I | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

Degree of multiprogramming

CPU utilization as a function of number of processes in
NEW SOUIH WALES memorv

* One approach

Problem: How to divide_ memor

—divide memory into fixed
equal-sized partitions

— Any process <= partition
size can be loaded into
any partition

THE UNIVERSITY O
NEW SOUTH WALES

Simple MM: Fixed, equal-sized

Simple MM: Fixed, variable-sized

o partitions
partitions s
H « Multipl : [H{ Partition
« Any unused space in the “Ptl'pe Queues il
. . — Place process in queue for smallest
partition is wasted I partition that it fits in. sartion
— Called internal oo
fragmentation O parton2
. Prqcesses smaller than — I e
main memory, but larger Speang |
than a partition cannot o
run.
e e .
L esa _ — L esa _
* Issue e Single queue, search
— Some partitions may OO rrione | for any jobs that fits
be idle oo « Small jobs in large Pariion 4
- Small jobs available, pariiion 3 partition if necessary
but only large partition — Increases internal mpﬂﬂ;ﬁﬁ Partition 3
free 400K memory fragmentation
[Partition 2
200K Partition 2
CHH] Partition 1
_ 100K Partition 1
Operating
system | o Operating
(@) system
(b)
= Ty UNIVIRSITY O 15 gr-\v:- THE UNIVIRSITY Of 16
NEW SOUTH WALES < s NEW SOUTH WALES
Fixed Partition Summary Dynamic Partitioning
« Simple « Partitions are of variable length
+ Easy to implement « Process is allocated exactly what it needs
« Can result in poor memory utilisation — Assume a process knows what it needs
— Due to internal fragmentation
» Used on IBM System 360 operating
system (OS/MFT)
— Announced 6 April, 1964
« Still applicable for simple embedded
systems
T SR, " T SR, °
g E

[OFmmE] [Cperatmg | [Thperating | [Operating |

System System System System
Process 1 }zmﬂ Process | |3 20M Process 1 }_-..M
56M Process 2 %I-‘M Process 2 %141\1

i6M
M Process3 | » 154
tam
{a) (h) () (d)

Figure 7.4 The Effect of Dynamic Partitioning

Figure 7.4 The Effect of Dynamic Partitioning

Tiperating Tiperatimng, Tiperatimng, Tiperatimng,
System System System System
Prcess2 | > 14M
Process 1 | 206 Process 1 | b 20M 20M
L M
. Process 4 }- M Process 4 E- M Process 4 | - 8\
b M M b M
Process 3 } 18M Process 3 | b 180 Process 3 ‘» 18M Process 3 | b 180
[Fam Fam tam
(€ in))

Dynamic Partitioning

* In previous diagram
— We have 16 meg free in total, but it can’t be used to
run any more processes requiring > 6 meg as it is
fragmented
— Called external fragmentation
» We end up with unusable holes

* Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory together in
one large block.

— Compaction is possible only if relocation is dynamic, and is done
at execution time.

THE UNIVIRSITY O 21
NEW SOUTH WALES

Recap: Fragmentation

» External Fragmentation:
— The space wasted external to the allocated memory
regions.
— Memory space exists to satisfy a request, but it is
unusable as it is not contiguous.
* Internal Fragmentation:
— The space wasted internal to the allocated memory
regions.
— allocated memory may be slightly larger than
requested memory; this size difference is wasted
memory internal to a partition.

UNIVIRSITY Ol 22
EW SOUTH WALES

Dynamic Partition Allocation
Algorithms

+ Also applicable to malloc()-like in-
application allocators
+ Basic Requirements
— Quickly locate a free partition satisfying the
request
* Minimise CPU time search
— Minimise external fragmentation
— Efficiently support merging two adjacent free
partitions into a larger partition

THIL UNIVIRSITY O1 23
NEW SOUTH WALES

Classic Approach

» Represent available memory as a linked
list of available “holes”.
—Base, size
— Kept in order of increasing address

+ Simplifies merging of adjacent holes into larger
holes.

Address! Address! Address! Address!
" Size

Size Size Size
Link / Link] Link = Link

THIL UNIVIRSITY O1 24
NEW SOUTH WALES

Coalescing Free Partitions with Linked
Lists

Before X terminates After X terminates

WlalxTe] v [2PZe0]
oA x 77 veomes | 2 7777
QWA x | B] vecomes 77771 8 |
@V x V7] veomes 1777777

Four neighbor combinations for the terminating
process X

LI UNIVIRSITY O1 25
NEW SOUTH WALES

Dynamic Partitioning Placement
Algorithm

« First-fit algorithm
— Scan the list for the first entry that fits
« If greater in size, break it into an allocated and free part
« Intent: Minimise amount of searching performed
— Aims to find a match quickly
— Generally can result in holes at the front end of
memory that must be searched over when trying to
find a free block.
— May have lots of unusable holes at the beginning.
« External fragmentation
— Tends to preserve larger blocks at the end of memory
Address| Address Address Address
Size Size Size Size
Link / Link / Link / Link
T UNIVERSITY O 26
NEW SOUTH WALES

Dynamic Partitioning Placement
Algorithm

* Next-fit
— Like first-fit, except it begins its search from the point
in list where the last request succeeded instead of at
the beginning.
« Spread allocation more uniformly over entire memory

— More often allocates a block of memory at the end of memory
where the largest block is found

« The largest block of memory is broken up into smaller blocks
— May not be able to service larger request as well as first fit.

Dynamic Partitioning Placement
Algorithm

 Best-fit algorithm

— Chooses the block that is closest in size to the
request

— Poor performer
« Has to search complete list
— does more work than first- or next-fit
« Since smallest block is chosen for a process, the smallest
amount of external fragmentation is left
— Create lots of unusable holes

Address| Address Address Address Address| Address Address Address
—* Size Size Size Size —* Size Size Size Size
Link / Link] e [Tk Link / Link] e |k
27 THI UNIVIRSITY O 28
NEW SOUTH WALES
LSl
= w
Dynamic Partitioning Placement e
. nm i A
I Y]
Algorithm
Last .
. . lhcated L
» Worst-fit algorithm plck 1) ™
— Chooses the block that is largest in size (worst-fit) 1 T
+ (whimsical) idea is to leave a usable fragment left over o — o —]
— Poor performer P
« Has to do more work (like best fit) to search complete list | | Dlosas ™
« Does not result in significantly less fragmentation N
36M —
0m
@1 Betore W Aer
Address| Address Address Address
—— Size / Size / Size /, Size
Link Link Link Link Figure 7.5 Example Memory Configuration Before
11l UNIVIRSITY O 29 and After Allocation of 16 Mbyte Block
NEW SOUTH WALES

Dynamic Partition Allocation
Algorithm

+ Summary
— First-fit and next-fit are generally better than the
others and easiest to implement
» Note: Used rarely these days
— Typical in-kernel allocators used are lazy buddy, and
slab allocators
« Might go through these later in extended
* You should be aware of them
— useful as a simple allocator for simple systems
— and not to repeat the mistakes of the past.....

THE UNIVERSITY O 31
NEW SOUTH WALES
=

Compaction

* Wecanreduce
external fragmentation
by compaction

— Only if we can relocate
running programs

— Generally requires
hardware support

THE UNIVERSITY O
NEW SOUTH WALES

Some Remaining Issues with Dynamic
Partitioning

* We have ignored

— Relocation
« How does a process run in
different locations in memory?
— Protection

» How do we prevent processes
interfering with each other

physical memory Corrent op >
* When are logical stack

addresses bound S

to physical?
felle T! 11 UNIVIRSITY O
NEW SOUTH WALES Fi F .

=
B T 1" UNIVIRSITY OI
d 3
B New SOUTH WaLES
—

addresses bound?

+ Compile/link time
— Compiler/Linker binds the
addresses
— Must know “run” location at
compile time
— Recompile if location changes
* Loadtime
— Compiler generates relocatable
code
— Loader binds the addresses at
load time
* Runtime
— Logical compile-time addresses

compiler or
assembler

linkage
editor

execution
time_(run
time)

by special hardware. binary

memory
image

Example Logical Address-Space

0x0000

Layo ut nllll’Drma(h;n : Entry point > [Process Control Bloek |

to program

+ Logical — pranch
addresses refer Program instructio}
to specific Increasing,
locations within =~ " J'

Reference|

the program

+ Once running,
these address i
must refer to real

todata

When are memory

Hardware Support for Runtime
Binding and Protectiones

+ For process B to run using logical
addresses
— Need to add an appropriate offset to its

logical addresses
« Achieve relocation
« Protect memory “lower” than B fimit I

— Must limit the maximum logical address B

can generate

« Protect memory “higher” than B

base

translated to physical addresses in-memory. }

THE UNIVERSITY O
m NEW SOUTH WALES 0x0000
=

Hardware Support for Relocation and
Limit Registers

Base and Limit Registers

OxFFFF

» Base and limit registers

— Restrict and relocate the currently
active process
— Base and limit registers must be
changed at
* Load time
+ Relocation (compaction time)
« On a context switch

OX6FFF
limit [

0x4000

(0x2FFF
Process C
10x0000 base

NEW SOUTH WALES 0x0000

=
BEE T I UNIVIRSITY OI
)

=
e
B New
—

« Also called base=0x8000
— e) imit =
regir;':er r?%ﬁ::gn — Base and bound registers fimit= 0x2000
— Relocation and limit registers
logical physical . Base and I|m|t I’egiStel’S
address yes address .
p— < o EER — Restrict and relocate the currently O e @
~ active process pase
ne — Base and limit registers must be
changed at
trap; addressing error * Load time
. « Relocation (compaction time)
« On a context switch
R - R oaotn
L oo L oo
Base and Limit Registers Base and Limit Registers
XFFFF
« Also called base=0x4000 - Cons
— Base and bound registers "™~ >°® . . .
. L2 — Physical memory allocation must still be
— Relocation and limit registers .
contiguous

— The entire process must be in memory

— Do not support partial sharing of address
spaces

THE UNIVIRSITY O 40
SOUTH WALES

Timesharing

OXFFFF

» Thus far, we have a system suitable for
a batch system
— Limited number of dynamically allocated
processes
« Enough to keep CPU utilised
— Relocated at runtime
— Protected from each other

+ But what about timesharing?
— We need more than just a small number of
processes running at once
— Need to support a mix of active and inactive
processes, of varying longevity

THE UNIVERSITY O
m NEW SOUTH WALES 0x0000
=

=

» A process can be swappedtemporarily out of memory to
« Backing store — fast disk large enough to accommodate

+ Can prioritize — lower-priority process is swapped out so

« Major part of swap time is transfer time; total transfer

EN

Swapping

a backing store, and then brought back into memory for
continued execution.

copies of all memory images for all users; must provide
direct access to these memory images.

higher-priority process can be loaded and executed.

time is directly proportional to the amount of memory
swapped.
— slow

THE UNIVERSITY O 42
EW SOUTH WALES

- : So far we have assumed a
Schematic View of Swapping :
— process is smaller than memory

GE + What can we do if a process is larger than
main memory?

process

@ swap out P,

process

@ swap in L

user

space backing store

main memory

THE UNIVERSITY O 43 THE UNIVERSITY O 44
NEW SOUTH WALES NEW SOUTH WALES

= =

Overlays Overlays for a Two-Pass Assembler

 Keep in memory only those instructions e |2
and data that are needed at any given
time.
» Implemented by user, no special support e |
needed from operating system
+ Programming design of overlay structure |1
is complex pssz I

THE UNIVIRSITY O 45
NEW SOUTH WALES

111 UNIVIRSITY O1 46
EW SOUTH WALES

Virtual Memory Virtual Memory - Paging
Partition physical memory into small il
. \ - . equal sized chunks SHes
» Developed to address the issues identified with _ Called frames soroak [
the simple schemes covered thus far. + Divide each process's virtual (logical) sex.qox [x| } vinual page
. i address space into same size chunks sok-sek X
« Two classic variants — Called pages
ask-52K | X
— Pagi — Virtual memory addresses consist of a
aging page number and offset within the page ~ 44K-48K| 7
— Segmentation « OS maintains a page table seng| X Physical
— contains the frame location for each page 36K40K| 5 memory
- tUserc]i by toI trggslate each virtual address 32K-36K| X \ address
. [. 0 physical address 28K-32K | X 28K-32K
Paging is now the dominant one of the two — The relation between rarconk X Sk aaK
« Some architectures support hybrids of the two SO e en ty habesabe o 2oz 5 K /Y 20K-24K
5 N 16K-20K 4 16K-20K
schemes » Process’s physical memory does not AN
) have to be contiguous T2K-16K| 0 12K-16K
— E.g. Intel IA-32 (32-bit x86) 8k-12k[6 8K-12K
4K-8K 1 \ 4K-8K
@ T UNIVIRSITY OF 47 @ T UNIVIRSITY OF Olcakl] 2 }\\OK'AK
NEW SOUTH WALES NEW SOUTH WALES
— Lo Page framd

!:!ﬂ'll memory Hﬂ n memory Hﬂ n memory
0 AD 0 AN o AD
1 Al 1 Al 1 Al
H“E Main memory Main memory Main memory 2 A2 2 A2 2 A2
) 0 AD 0 A0 1 :“’ : Aot l ;f)
1 1 ; 1 : i |
Al Al s B 5 5 D.1
2 2 A2 2 A2 6 ¥ i s =
2 3 L] 3 L] 7 T 7775 7 7
* 4 4 o 8 (i E (i 8 (i
3 3 R NN 9 Ca77 9 s 9 Ca77
6 6 [B2 10 il 10 1k 10 Gl
7 7 7 1 1 T D3
8 8 8 12 12 12 DA
2 2 2 13 13 13
0 10 10 14 14 14
1 " 1 {d) Load Process © {e) Swap out B (f) Load Process D
12 12 12
13 13 13 D 0| — 0o 7 0| 4
14 14 14 L 1 1 — 1 8 1 s
A 2] — 2] 9 2] 6
() Fifteen Available Frames (h) Load Process A (b Load Process B i 3 Process B 3 10 3 11
Process A page table Process C 4 12
Figure 7.9 Assignment of Process Pages to Free Frames page table page table P"’“S‘Sb:)
page table

Paging

* No external fragmentation
Small internal fragmentation (in last page)
Allows sharing by mapping several pages
to the same frame
* Abstracts physical organisation

— Programmer only deal with virtual addresses
» Minimal support for logical organisation

— Each unit is one or more pages

THE UNIVIRSITY O 51

NEW SOUTH WALES

Memory Management Unit
(also called Translation Look-aside Buffer — TLB)

The CPU sends virtual
addresses to the MMU

CPU
package
CPU
Memory M Disk
management emory controller
unit
\ l } Bus

The MMU sends physical
addresses to the memory

The position and function of the MMU

THIE UNIVIRSITY O
NEW SOUTH WALES

52

Guigeing
aon
i
(24580)
1s[om o]
14[000 [0
13000 [0
Assume for now that 12[000 | 0]
the page table is T
contained wholly in o[do1 [1]
registers within the 7:3:*.‘; ggg [o] sy
MMU — in practice it . bl
is not 5
A
s
-
1
oo TGt
Vil page - 2 used
page table ‘\Ir‘\’c‘tjravimg
uunmumnaamun [o] e
Internal operation of simplified MMU with 16 4 KB pages
et T UNIVERSITY O 53
) NEW SOUTH WALES
L oo

Virtual Memory - Segmentation

+ Memory-management scheme
that supports user’s view of
memory.

« A programis a collection of
segments. A segmentis a

subroutine

symbol

logical unit such as: table

— main program, procedure,
function, method, object, local
variables, global variables,
common block, stack, symbol main
table, arrays program

THII UNIVIRSITY Ol
NEW SOUTH WALES

logical address space

Logical View of Segmentation

user space physical memory space

LI UNIVIRSITY O1 55
NEW SOUTH WALES

Segmentation Architecture

Logical address consists of a two tuple: <segment-
number, offset>,

— Addresses identify segment and address with segment
Segment table — each table entry has:

— base — contains the starting physical address where the
segments reside in memory.

— limit — specifies the length of the segment.
Segment-table base register (STBR) points to the
segment table’s location in memory.
Segment-table length register (STLR) indicates number
of segments used by a program;

segment number s is legal if s < STLR.

THIL UNIVERSITY O1 56
NEW SOUTH WALES

Example of Segmentation

Segmentation Hardware P
subroutine
[———p S 1400
— limit | base segment 3 segment 0
2400
egmento e
segment —
e soamenid | ol1000 | 140
cPy = \ e 0 | 1| 400 es00 3200
main 2| 400 | 4300
rogram /
\ P /il |0 EopETE
<
\‘\segmem‘ segment 2 /,/’ segmenttable 4300 [
no S 4700 ———|
\V
logical address space segment 4
5700
trap; addressing error physical memory 6300
bf T! 11" UNIVIRSITY OI 57 6700m 58
NEW SOUTH WALES
) physical memor
. . Sharing of Segments
Segmentation Architecture
// AN
» Protection. With each entry in segment table =
associate:
— validation bit = 0 = illegal segment 0
— read/write/execute privileges L L .
+ Protection bits associated with segments; code e R
sharing occurs at segment level. e
+ Since segments vary in length, memory N\ .
allocation is a dynamic partition-allocation \ a2
problem. o ‘ o
* A segmentation example is shown in the J T F——
following diagram e/ 1o soms]
~— e segment table
11 UNIVIRSITY O 59 THE UNIVIRSITY O — proces 60
NEW SOUTH WALES NEW SOUTH WALES W;f:c;“;"g:”

10

Comparison

Segmentation Architecture S
A i o Noy Yeu
* Relocation. pro
— dynamic o P
= by segment table
Mo Vi
» Sharing. — —
— shared segments
. . . T s
= same physical backing multiple segments
= ideally, same segment number Dok AR
. samenlizel ok 1
« Allocation. bt Gk g
— First/next/best fit R g
= external fragmentation]])
@ o s STy O o @ e COMparison of paging and segmentation
NEW SOUTH WALES NEW SOLU
L oo L oo

