Memory Management

THIL UNIVIRSITY O1 1
NEW SOUTH WALES

=

Learning Outcomes

* Appreciate the need for memory managementin
operating systems, understand the limits of fixed
memory allocation schemes.

» Understand fragmentation in dynamic memory
allocation, and understand dynamic allocation
approaches.

» Understand how program memory addresses relate to
physical memory addresses, memory managementin
base-limit machines, and swapping

« An overview of virtual memory management, including
paging and segmentation.
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Process

» One or more threads of execution
» Resources required for execution

— Memory (RAM)

» Program code (“text”)

« Data (initialised, uninitialised, stack)

« Buffers held in the kernel on behalf of the process
— Others

+ CPU time

« Files, disk space, printers, etc.
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Some Goals of an Operating
System

» Maximise memory utilisation

» Maximise CPU utilization

» Minimise response time

+ Prioritise “important” processes

* Note: Conflicting goals = tradeoffs
— E.g. maximising CPU utilisation (by running
many processes) increases (degrades)
system response time.

THIE UNIVIRSITY O 4
3 <
< s NEW SOUTH WALES

mrrm

Memory Management

» Keeps track of what memory is in use and
what memory is free

+ Allocates free memory to process when
needed
— And deallocates it when they don'’t

* Manages the transfer of memory between
RAM and disk.
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Memory Hierarchy

* Ideally, programmers
want memory that is rrem.s p
— Fast Bty ]
— Large
— Nonvolatile main memory

* Not possible
electronic disk

* Memory -
management B ik
coordinates how

memory hierarchy is w h
used.
— Focus usually on :—lc

RAM < Disk | magnetic tapes
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Memory Management

» Two broad classes of memory
management systems
— Those that transfer processes to and from
disk during execution.
* via swapping or paging
— Those that don’t
« Simple
+ Might find this scheme in an embedded device,
dumb phone, or smartcard.
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Basic Memory Management
Monoprogramming without Swapping or Paging

OxFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0
(a) (b) (c)

Three simple ways of organizing memory
. @n operating system with one user process.
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Monoprogramming

+ Okay if
— Only have one thing to do
— Memory available approximately equates to
memory required
+ Otherwise,
— Poor CPU utilisation in the presence of 1/0
waiting
— Poor memory utilisation with a varied job mix
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Idea

 Subdivide memory and run more than one
process at once!!l!
— Multiprogramming, Multitasking
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Modeling Multiprogramming
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Degree of multiprogramming

CPU utilization as a function of number of processes in
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* One approach

Problem: How to divide_ memor

—divide memory into fixed
equal-sized partitions

— Any process <= partition
size can be loaded into
any partition
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Simple MM: Fixed, equal-sized

Simple MM: Fixed, variable-sized

o partitions
partitions s
H « Multipl : [H{ Partition
« Any unused space in the “Ptl'pe Queues il
. . — Place process in queue for smallest
partition is wasted I partition that it fits in. sartion
— Called internal oo
fragmentation O parton2
. Prqcesses smaller than — I e
main memory, but larger Speang |
than a partition cannot o
run.
e e .
L esa _ — L esa _
* Issue e  Single queue, search
— Some partitions may OO rrione | for any jobs that fits
be idle oo « Small jobs in large Pariion 4
- Small jobs available, pariiion 3 partition if necessary
but only large partition — Increases internal mpﬂﬂ;ﬁﬁ Partition 3
free 400K memory fragmentation
[ Partition 2
200K Partition 2
CHH ] Partition 1
_ 100K Partition 1
Operating
system | o Operating
(@) system
(b)
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Fixed Partition Summary Dynamic Partitioning
« Simple « Partitions are of variable length
+ Easy to implement « Process is allocated exactly what it needs
« Can result in poor memory utilisation — Assume a process knows what it needs
— Due to internal fragmentation
» Used on IBM System 360 operating
system (OS/MFT)
— Announced 6 April, 1964
« Still applicable for simple embedded
systems
T SR, " T SR, °
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Figure 7.4 The Effect of Dynamic Partitioning

Figure 7.4 The Effect of Dynamic Partitioning
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Dynamic Partitioning

* In previous diagram
— We have 16 meg free in total, but it can’t be used to
run any more processes requiring > 6 meg as it is
fragmented
— Called external fragmentation
» We end up with unusable holes

* Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory together in
one large block.

— Compaction is possible only if relocation is dynamic, and is done
at execution time.
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Recap: Fragmentation

» External Fragmentation:
— The space wasted external to the allocated memory
regions.
— Memory space exists to satisfy a request, but it is
unusable as it is not contiguous.
* Internal Fragmentation:
— The space wasted internal to the allocated memory
regions.
— allocated memory may be slightly larger than
requested memory; this size difference is wasted
memory internal to a partition.
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Dynamic Partition Allocation
Algorithms

+ Also applicable to malloc()-like in-
application allocators
+ Basic Requirements
— Quickly locate a free partition satisfying the
request
* Minimise CPU time search
— Minimise external fragmentation
— Efficiently support merging two adjacent free
partitions into a larger partition
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Classic Approach

» Represent available memory as a linked
list of available “holes”.
—Base, size
— Kept in order of increasing address

+ Simplifies merging of adjacent holes into larger
holes.

Address! Address! Address! Address!
" Size

Size Size Size
Link / Link ] Link = Link
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Coalescing Free Partitions with Linked
Lists

Before X terminates After X terminates

WlalxTe] v [2PZe0]
oA x 77 veomes | 2 7777
QWA x | B ] vecomes 77771 8 |
@V x V7] veomes 1777777

Four neighbor combinations for the terminating
process X
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Dynamic Partitioning Placement
Algorithm

« First-fit algorithm
— Scan the list for the first entry that fits
« If greater in size, break it into an allocated and free part
« Intent: Minimise amount of searching performed
— Aims to find a match quickly
— Generally can result in holes at the front end of
memory that must be searched over when trying to
find a free block.
— May have lots of unusable holes at the beginning.
« External fragmentation
— Tends to preserve larger blocks at the end of memory
Address| Address Address Address
Size Size Size Size
Link / Link / Link / Link
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Dynamic Partitioning Placement
Algorithm

* Next-fit
— Like first-fit, except it begins its search from the point
in list where the last request succeeded instead of at
the beginning.
« Spread allocation more uniformly over entire memory

— More often allocates a block of memory at the end of memory
where the largest block is found

« The largest block of memory is broken up into smaller blocks
— May not be able to service larger request as well as first fit.

Dynamic Partitioning Placement
Algorithm

 Best-fit algorithm

— Chooses the block that is closest in size to the
request

— Poor performer
« Has to search complete list
— does more work than first- or next-fit
« Since smallest block is chosen for a process, the smallest
amount of external fragmentation is left
— Create lots of unusable holes

Address| Address Address Address Address| Address Address Address
—* Size Size Size Size —* Size Size Size Size
Link / Link ] e [Tk Link / Link ] e |k
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Dynamic Partitioning Placement e
. nm i A
I Y]
Algorithm
Last .
. . lhcated L
» Worst-fit algorithm plck 1) ™
— Chooses the block that is largest in size (worst-fit) 1 T
+ (whimsical) idea is to leave a usable fragment left over o — o —]
— Poor performer P
« Has to do more work (like best fit) to search complete list | | Dlosas ™
« Does not result in significantly less fragmentation N
36M —
0m
@1 Betore W Aer
Address| Address Address Address
—— Size / Size / Size /, Size
Link Link Link Link Figure 7.5 Example Memory Configuration Before
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Dynamic Partition Allocation
Algorithm

+ Summary
— First-fit and next-fit are generally better than the
others and easiest to implement
» Note: Used rarely these days
— Typical in-kernel allocators used are lazy buddy, and
slab allocators
« Might go through these later in extended
* You should be aware of them
— useful as a simple allocator for simple systems
— and not to repeat the mistakes of the past.....
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Compaction

* Wecanreduce
external fragmentation
by compaction

— Only if we can relocate
running programs

— Generally requires
hardware support
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Some Remaining Issues with Dynamic
Partitioning

* We have ignored

— Relocation
« How does a process run in
different locations in memory?
— Protection

» How do we prevent processes
interfering with each other

physical memory Corrent op >
* When are logical stack

addresses bound S

to physical?
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addresses bound?

+ Compile/link time
— Compiler/Linker binds the
addresses
— Must know “run” location at
compile time
— Recompile if location changes
* Loadtime
— Compiler generates relocatable
code
— Loader binds the addresses at
load time
* Runtime
— Logical compile-time addresses

compiler or
assembler

linkage
editor

execution
time_(run
time)

by special hardware. binary

memory
image

Example Logical Address-Space

0x0000

Layo ut nllll’Drma(h;n : Entry point > [ Process Control Bloek |

to program

+ Logical — pranch
addresses refer Program instructio}
to specific Increasing,
locations within =~ " J'

Reference|

the program

+ Once running,
these address i
must refer to real

todata

When are memory

Hardware Support for Runtime
Binding and Protectiones

+ For process B to run using logical
addresses
— Need to add an appropriate offset to its

logical addresses
« Achieve relocation
« Protect memory “lower” than B fimit I

— Must limit the maximum logical address B

can generate

« Protect memory “higher” than B

base

translated to physical addresses in-memory. }
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Hardware Support for Relocation and
Limit Registers

Base and Limit Registers

OxFFFF

» Base and limit registers

— Restrict and relocate the currently
active process
— Base and limit registers must be
changed at
* Load time
+ Relocation (compaction time)
« On a context switch

OX6FFF
limit [

0x4000

(0x2FFF
Process C
10x0000 base
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« Also called base=0x8000
— e ) imit =
regir;':er r?%ﬁ::gn — Base and bound registers fimit= 0x2000
— Relocation and limit registers
logical physical . Base and I|m|t I’egiStel’S
address yes address .
p— < o EER — Restrict and relocate the currently O e @
~ active process pase
ne — Base and limit registers must be
changed at
trap; addressing error * Load time
. « Relocation (compaction time)
« On a context switch
R - R oaotn
L oo L oo
Base and Limit Registers Base and Limit Registers
XFFFF
« Also called base=0x4000 - Cons
— Base and bound registers "™~ >°® . . .
. L2 — Physical memory allocation must still be
— Relocation and limit registers .
contiguous

— The entire process must be in memory

— Do not support partial sharing of address
spaces
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Timesharing

OXFFFF

» Thus far, we have a system suitable for
a batch system
— Limited number of dynamically allocated
processes
« Enough to keep CPU utilised
— Relocated at runtime
— Protected from each other

+ But what about timesharing?
— We need more than just a small number of
processes running at once
— Need to support a mix of active and inactive
processes, of varying longevity
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» A process can be swappedtemporarily out of memory to
« Backing store — fast disk large enough to accommodate

+ Can prioritize — lower-priority process is swapped out so

« Major part of swap time is transfer time; total transfer

EN

Swapping

a backing store, and then brought back into memory for
continued execution.

copies of all memory images for all users; must provide
direct access to these memory images.

higher-priority process can be loaded and executed.

time is directly proportional to the amount of memory
swapped.
— slow
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- : So far we have assumed a
Schematic View of Swapping :
— process is smaller than memory

GE + What can we do if a process is larger than
main memory?

process

@ swap out P,

process

@ swap in L

user

space backing store

main memory
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Overlays Overlays for a Two-Pass Assembler

 Keep in memory only those instructions e |2
and data that are needed at any given
time.
» Implemented by user, no special support e |
needed from operating system
+ Programming design of overlay structure |1
is complex pssz I
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Virtual Memory Virtual Memory - Paging
Partition physical memory into small il
. \ - . equal sized chunks SHes
» Developed to address the issues identified with _ Called frames soroak [
the simple schemes covered thus far. + Divide each process's virtual (logical)  sex.qox [ x| } vinual page
. i address space into same size chunks sok-sek X
« Two classic variants — Called pages
ask-52K | X
— Pagi — Virtual memory addresses consist of a
aging page number and offset within the page ~ 44K-48K| 7
— Segmentation « OS maintains a page table seng| X Physical
— contains the frame location for each page 36K40K| 5 memory
- tUserc]i by toI trggslate each virtual address 32K-36K| X \ address
. [ . 0 physical address 28K-32K | X 28K-32K
Paging is now the dominant one of the two — The relation between rarconk X Sk aaK
« Some architectures support hybrids of the two SO e en ty habesabe o 2oz 5 K /Y 20K-24K
5 N 16K-20K 4 16K-20K
schemes » Process’s physical memory does not AN
) have to be contiguous T2K-16K| 0 12K-16K
— E.g. Intel IA-32 (32-bit x86) 8k-12k[ 6 8K-12K
4K-8K 1 \ 4K-8K
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!:!ﬂ'll memory Hﬂ n memory Hﬂ n memory
0 AD 0 AN o AD
1 Al 1 Al 1 Al
H“E Main memory Main memory Main memory 2 A2 2 A2 2 A2
) 0 AD 0 A0 1 :“’ : Aot l ;f)
1 1 ; 1 : i |
Al Al s B 5 5 D.1
2 2 A2 2 A2 6 ¥ i s =
2 3 L] 3 L] 7 T 7775 7 7
* 4 4 o 8 (i E (i 8 (i
3 3 R NN 9 Ca77 9 s 9 Ca77
6 6 [ B2 10 il 10 1k 10 Gl
7 7 7 1 1 T D3
8 8 8 12 12 12 DA
2 2 2 13 13 13
0 10 10 14 14 14
1 " 1 {d) Load Process © {e) Swap out B (f) Load Process D
12 12 12
13 13 13 D 0| — 0o 7 0| 4
14 14 14 L 1 1 — 1 8 1 s
A 2] — 2] 9 2] 6
() Fifteen Available Frames (h) Load Process A (b Load Process B i 3 Process B 3 10 3 11
Process A page table Process C 4 12
Figure 7.9 Assignment of Process Pages to Free Frames page table page table P"’“S‘Sb:)
page table

Paging

* No external fragmentation
Small internal fragmentation (in last page)
Allows sharing by mapping several pages
to the same frame
* Abstracts physical organisation

— Programmer only deal with virtual addresses
» Minimal support for logical organisation

— Each unit is one or more pages
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Memory Management Unit
(also called Translation Look-aside Buffer — TLB)

The CPU sends virtual
addresses to the MMU

CPU
package
CPU
Memory M Disk
management emory controller
unit
\ l } Bus

The MMU sends physical
addresses to the memory

The position and function of the MMU
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Guigeing
aon
i
(24580)
1s[om o]
14[ 000 [0
13000 [0
Assume for now that 12[ 000 | 0]
the page table is T
contained wholly in o[ do1 [ 1]
registers within the 7:3:*.‘; ggg [o] sy
MMU — in practice it . bl
is not 5
A
s
-
1
oo TGt
Vil page - 2 used
page table ‘\Ir‘\’c‘tjravimg
uunmumnaamun [o] e
Internal operation of simplified MMU with 16 4 KB pages
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Virtual Memory - Segmentation

+ Memory-management scheme
that supports user’s view of
memory.

« A programis a collection of
segments. A segmentis a

subroutine

symbol

logical unit such as: table

— main program, procedure,
function, method, object, local
variables, global variables,
common block, stack, symbol main
table, arrays program
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logical address space




Logical View of Segmentation

user space physical memory space
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Segmentation Architecture

Logical address consists of a two tuple: <segment-
number, offset>,

— Addresses identify segment and address with segment
Segment table — each table entry has:

— base — contains the starting physical address where the
segments reside in memory.

— limit — specifies the length of the segment.
Segment-table base register (STBR) points to the
segment table’s location in memory.
Segment-table length register (STLR) indicates number
of segments used by a program;

segment number s is legal if s < STLR.

THIL UNIVERSITY O1 56
NEW SOUTH WALES

Example of Segmentation

Segmentation Hardware P
subroutine
[———p S 1400
— limit | base segment 3 segment 0
2400
egmento e
segment —
e soamenid | ol1000 | 140
cPy = \ e 0 | 1| 400 es00 3200
main 2| 400 | 4300
rogram /
\ P /il |0 EopETE
<
\‘\segmem‘ segment 2 /,/’ segmenttable 4300 [
no S 4700 ———|
\V
logical address space segment 4
5700
trap; addressing error physical memory 6300
bf T! 11" UNIVIRSITY OI 57 6700m 58
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) physical memor
. . Sharing of Segments
Segmentation Architecture
// AN
» Protection. With each entry in segment table =
associate:
— validation bit = 0 = illegal segment 0
— read/write/execute privileges L L .
+ Protection bits associated with segments; code e R
sharing occurs at segment level. e
+ Since segments vary in length, memory N\ .
allocation is a dynamic partition-allocation \ a2
problem. o ‘ o
* A segmentation example is shown in the J T F——
following diagram e/ 1o soms]
~— e segment table
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Comparison

Segmentation Architecture S
A i o Noy Yeu
* Relocation. pro
— dynamic o P
= by segment table
Mo Vi
» Sharing. — —
— shared segments
. . . T s
= same physical backing multiple segments
= ideally, same segment number Dok AR
. samenlizel ok 1
« Allocation. bt Gk g
— First/next/best fit R g
= external fragmentation ] ] )
@ o s STy O o @ e COMparison of paging and segmentation
NEW SOUTH WALES NEW SOLU
L oo L oo




