UNIX File Management
(continued)

==Y THE UNIVERSITY OF
_ NEW SOUTH WALES

q
Py

OS storage stack (recap)

Application

v

FD table

OF table

VFS

Buffer cache

Disk scheduler

Device driver

=2

1 THE UNIVERSITY OF
NEW SOUTH WALES

Virtual File System (VFS)

Application

v

FD table

OF table
VFS
FS

Buffer cache

Disk scheduler

Device driver

=2

1 THE UNIVERSITY OF
NEW SOUTH WALES

Older Systems only had a single
file system

*They had file system specific open, close, read,
write, ... calls.
However, modern systems need to support many

file system types
—1S0O9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs

SR THE UNIVERSITY OF 4
NEW SOUTH WALES

Supporting Multiple File
Systems

Alternatives

« Change the file system code to understand
different file system types
— Prone to code bloat, complex, non-solution

* Provide a framework that separates file system
independent and file system dependent code.
— Allows different file systems to be “plugged in”

Virtual File System (VFS)

Application
v
FD table
OF table
VES
FS FS2
Buffer cache
Disk scheduler Disk scheduler
Device driver Device driver

L] THE UNIVERSITY OF

Virtual file system (VFS)

/
open(“/home/leonidr/tile”, ...);
A y Traversing the directory hierarchy
ext3 may require VFS to issue requests

to several underlying file systems

/home/leonidr

nfs

Virtual File System (VFS)

« Provides single system call interface for many file
systems

— E.g., UFS, Ext2, XFS, DOS, 1S09660....
« Transparent handling of network file systems

— E.g., NFS, AFS, CODA
» File-based interface to arbitrary device drivers (/dev)
» File-based interface to kernel data structures (/proc)

* Provides an indirection layer for system calls
— File operation table set up at file open time
— Points to actual handling code for particular type
— Further file operations redirected to those functions

=
| gEis

BL| THE UNIVERSITY OF 8
@l NEFW SOUTH WALES

The file system independent code
deals with vfs and vnodes

VEFS FS
— ——> Vnode —— |inode
File system
naent
BB THE UNIVERSITY File Descriptor 0 File Tab| depende
@5 NEW SOUTH WAL Tables pen rile lable code

VES Interface
« Reference

— S.R. Kleiman., "Vnodes: An Architecture for Multiple File System
Types in Sun Unix," USENIX Association: Summer Conference
Proceedings, Atlanta, 1986

— Linux and OS/161 differ slightly, but the principles are the same

« Two major data types
— VFS

» Represents all file system types

« Contains pointers to functions to manipulate each file system as a whole (e.g.
mount, unmount)
— Form a standard interface to the file system

— Vnode
» Represents a file (inode) in the underlying filesystem
» Points to the real inode

« Contains pointers to functions to manipulate files/inodes (e.g. open, close, read,
write,...)

” - THE UNIVERSITY OF o

Vis and Vnode Structures

struct vnode
Generic /
(FS-independent)
fields

fs_data
vhode ops

* Size
e uid, gid
e ctime, atime, mtime

— —

FS-specific

ext2fs read
ext2fs write \\

FS-specific
implementation of
vhode operations

fields

* Block group number
« Data block list

11

Vis and Vnode Structures

struct vfs .
Generic /— - Block size
(FS-independent) « Max file size

fields S
fs data

vis ops

FS-specific

,|, fields

ext2_unmount
ext2_getroot \\

FS-specific
implementation of

* I-nodes per group
« Superblock address

FS operations

L] THE UNIVERSITY OF 12

3 N 5%

A look at OS/161°

The OS161’s file system type
Represents interface to a mounted filesystem

s VFS

Force the
filesystem to
flush its content

to disk
struct fs { Retrieve the
int (*£s_sync) (struct fs *); volume name
const char *(*fs_getvolname) (struct fs *);

Retrieve the vnode

struct vnode * (*fs_getroot) (struct £fs *);-

int (*£s_unmount) (struct £f£s *);

void *fs_ data;

associated with the
root of the
filesystem

A

Private file system
specific data

Unmount the filesystem
Note: mount called via
function ptr passed to
vEfs_mount

13

Count the
number of
“references”
to this vnode

struct v

Vnode
node { //[

int vn_refcount;

Lock for mutual
exclusive
access to

counts

struct spinlock wvn_countlock;k

struct fs *vn fs;

void *vn_data; —

T THE UNIVERSITY OF
BEE NEW SOUTH WALES

Pointer to FS
specific
vnode data
(e.g. inode)

Array of pointers
to functions
operating on

vhodes

Pointer to FS
containing
the vnode

const struct vnode_ops_itgéops;

14

struct wvnode_ops {

Vnode Ops

unsigned long vop_magic; /* should always be VOP_MAGIC */

int (*vop_eachopen) (struct vnode *object, int flags_from_ open);

int (*vop_reclaim) (struct wvnode *wvnode);

int (*vop_read) (struct vnode *file, struct uio *uio);

int (*vop_readlink) (struct wvnode *link,

struct uio *uio);

int (*vop_getdirentry) (struct vnode *dir, struct uio *uio);

int (*vop_write) (struct vnode *file, struct uio *uio);

int (*vop_ioctl) (struct vnode *object, int op, userptr t data);
int (*vop_stat) (struct vnode *object, struct stat *statbuf);

int (*vop_gettype) (struct vnode *object,

int *result);

int (*vop_isseekable) (struct vnode *object, off t pos);

int (*vop_fsync) (struct vnode *object);

int (*vop_mmap) (struct vnode *file /* add stuff */);

int (*vop_truncate) (struct wvnode *file,
int (*vop_namefile) (struct wvnode *file,

THE UNIVERSITY OF
NEW SOUTH WALES

off t len);
struct uio *uio);

15

Vnode

int (*vop_creat) (struct vnode *dir,
const char *name, int excl,
struct vnode **result);
int (*vop_symlink) (struct wvnode *dir,
const char *contents, const char *name);
int (*vop_mkdir) (struct wvnode *parentdir,
const char *name);
int (*vop_link) (struct wvnode *dir,
const char *name, struct vnode *file);
int (*vop_remove) (struct wvnode *dir,
const char *name);
int (*vop_rmdir) (struct wvnode *dir,
const char *name);

int (*vop_rename) (struct wvnode *vnl, const char *namel,
struct vnode *vn2, const char *name2);

int (*vop_lookup) (struct wvnode *dir,
char *pathname, struct wvnode **result);
int (*vop_lookparent) (struct wvnode *dir,
char *pathname, struct vnode **result,
char *buf, size t len);

THE UNIVERSITY OF
NEW SOUTH WALES

Ops

Vnode Ops

*Note that most operations are on vnodes. How do
we operate on file names?

—Higher level APl on names that uses the internal VOP_*
functions

int vfs_open(char *path, int openflags, struct wvnode **ret);
void vfs_close(struct vnode *vn);

int vfs_readlink (char *path, struct uio *data);

int vfs_symlink (const char *contents, char *path);

int vfs_mkdir (char *path);

int vfs_link (char *oldpath, char *newpath);

int vfs_remove (char *path);

int vfs_rmdir (char *path);

int vfs_rename (char *oldpath, char *newpath);

int vfs_chdir (char *path);
int vfs_getcwd(struct uio *buf);

Ei THE UNIVERSITY OF 17
RS NEW SOUTH WALES

Example: OS/161 emufs vhode
ops

/ *
fs_fil tt ,
* Function table for emufs emuts_tite _gettype
files. emufs_tryseek,
* / emufs_fsync,
static const struct vnode_ops UNIMP, /* mmap */
emufs_fileops = { emufs_truncate,
VOP_MAGIC, /* mark this a NOTDIR, /* namefile */

valid vnode ops table */
NOTDIR, /* creat */

emufs_eachopen, NOTDIR, /* symlink */
emufs_reclaim, NOTDIR, /* mkdir */
NOTDIR, /* link */

emufs_ read, NOTDIR, /* remove */
NOTDIR, /* readlink */ NOTDIR, /* rmdir */
NOTDIR, /* getdirentry */ NOTDIR, /* rename */
emufs write,

emufs_ioctl, NOTDIR, /* lookup */

emufs_stat, NOTDIR, /* lookparent */
}i

File Descriptor & Open File Tables

Application

FD table
OF table
VES

FS
Buffer cache

Disk scheduler

Device driver

SETY THE UNIVERSITY OF
NEW SOUTH WALES

*

Motivation

: Application
System call interface: PP ¥
fd = open(“file”,...);
read(fd,...):write(fd,...) Iseek(fd,...): FD table
~ Close(fd); ’/ OF table
a — VFS
T * Buffer cache
VES interface: Disk scheduler
vnode = vis_open(“file”,...); Device driver
vop_read(vnode,uio); ©
vop_write(vnode,uio);
~ vop_close(vnode);

=2

1 THE UNIVERSITY OF
NEW SOUTH WALES

File Descriptors

 File descriptors
— Each open file has a file descriptor

— Read/Write/lseek!/.... use them to specify which file to
operate on.

» State associated with a file descriptor
— File pointer

 Determines where in the file the next read or write is
performed

— Mode

« Was the file opened read-only, etc....

L THE UNIVERSITY OF 21

An Option?

*Use vnode numbers as file descriptors and
add a file pointer to the vnode

*Problems

—What happens when we concurrently open the
same file twice?

*We should get two separate file descriptors and file
pointers....

L THE UNIVERSITY OF 22

An Option?

Array of Inodes

id in RAM
*Single global open

file array

—fd is an index into the fip

array I-ptr vnode

—Entries contain file
pointer and pointer to a
vhode

23

lssues

fd
File descriptor 1 is

stdout

—Stdout is
sconsole for some processes

*A file for others
*Entry 1 needs to be
different per process!

V-ptr

vhode

24

Per-process File Descriptor

Array

*Each process has its p, ¢4
own open file array

—Contains fp, v-ptr etc.

—Fd 1 can point to any
vhode for each process

(console, log file).
P2 fd

SE THE UNIVERSITY OF
NEW SOUTH WALES

vhode

vhode

V-ptr

25

|Issue

*Fork

—Fork defines that the child shares P1 id
the file pointer with the parent

*Dup?2

—Also defines the file descriptors

share the file pointer v-ptr — vnode

*With per-process table, we
can only have independent
file pointers

—Even when accessing the same
file

vhode

P2 fd

v-ptr| ——

26

Per-Process fd table with global

open file table

*Per-process file descriptor
array

—Contains pointers to open file
table entry

*Open file table array

—Contain entries with a fp and
pointer to an vnode.

*Provides

—Shared file pointers if required
—Independent file pointers if
required

Example:

—All three fds refer to the same
file, two share a file pointer, one
has an independent file pointer

P1 fd
ofptr| — | fp
v-pir ~ L vnode
ofptr fp vnode
P2 fd v-ptr| —

Per-process
File Descriptor
Tables

ofptr

Open File Table 27

Per-Process fd table with global

open file table

*Used by Linux and
most other Unix
operating systems

P1 fd

P2 fd

ofptr| — | fp
v-ptr ~ L vnode

p
ofptr v-ptr| — vnode

Per-process
File Descriptor
Tables

ofptr

Open File Table 28

Buffer Cache

Application

. 2
FD table

OF table
VFS
FS

Buffer cache

Disk scheduler

Device driver

=2

1 THE UNIVERSITY OF
NEW SOUTH WALES

Buffer

Buffer:

—Temporary storage used when transferring data
between two entities

*Especially when the entities work at different rates

*Or when the unit of transfer is incompatible

Example: between application program and disk

L THE UNIVERSITY OF 30

2

=2

Buffering Disk Blocks

Allow applications to work with
arbitrarily sized region of a file

Buffers —However, apps can still optimise for

Application _ . .
Program in Kernel| & particular block size
RAM
Transfer of
arbitrarily
f
sized regions Tr?:hséz ° 4 10

)

16| 6

- THE UNIVERSITY OF : 31
NEW SOUTH WALES Disk

Buffering Disk Blocks

*Writes can return immediately
after copying to kernel buffer

o Buffers —Avoids waiting until write to disk is
Application

Program In Kernel cc\)/\r/nplete heduled in th
—Write is scheduled in the
RAM background
Transfer of
arbitrarily
sized regions Tr?,chscf,z o 4 10
of file blocks 11
7
h 14
15
16| 6
B THE UNIVERSITY OF Disk -

@58 NEW SOUTH WALES

Buffering Disk Blocks

-Can implement read-ahead by
pre-loading next block on disk into
Buffers kernel buffer

Application] : : : :
Program in Kernel _—Avmdsdhavmg to wait until next read
IS ISSU€e
RAM
Transfer of
arbitrarily
: fer of
sized regions Tr?:hsofé ° 4 10
of file blocks 1 1
16| 6
. m : 33
B Disk

Cache

Cache:

—Fast storage used to temporarily hold data to
speed up repeated access to the data

Example: Main memory can cache disk blocks

34

Caching Disk Blocks

On access
Cached —Before loading block from disk, check if it

blocks in is in cache first

Application *Avoids disk accesses

Program Kernel c -
«Can optimise for repeated access for
RAM P P

single or several processes

Transfer of

bitraril
si;(;dlr?g;:gns Tr?:hséz of 4 10
of file blocks 1 1
> 7
14
15
16| 6

==

L1 THE UNIVERSITY OF I
BNl NEW SOUTH WALES Disk

35

B
[Tesal |

Buffering and caching are
related

Data is read into buffer; an extra independent
cache copy would be wasteful

After use, block should be cached
*Future access may hit cached copy

*Cache utilises unused kernel memory space;
—may have to shrink, depending on memory demand

THE UNIVERSITY OF 36
NEW SOUTH WALES

Unix Buffer Cache

On read

—Hash the devicet#, block# £ .
—Check if match in buffer 5 3
cache Device List 75' e
—Yes, simply use in-memory —r N e B
copy

—No, follow the collision chain
—If not found, we load block

from disk into buffer cache s

Free List

= Polnter

1 THE UNIVERSITY OF
NEW SOUTH WALES

Replacement

*What happens when the buffer cache
Is full and we need to read another
block into memory?

—We must choose an existing entry to replace

—Need a policy to choose a victim

«Can use First-in First-out
Least Recently Used, or others.

—Timestamps required for LRU implementation

 However, is strict LRU what we want?

SE THE UNIVERSITY OF 38
NEW SOUTH WALES

File System Consistency

File data is expected to survive

Strict LRU could keep modified critical data
iIn memory forever if it is frequently used.

Sl THE UNIVERSITY OF 39
@ NEW SOUTH WALES

File System Consistency

*Generally, cached disk blocks are prioritised in
terms of how critical they are to file system
consistency

—Directory blocks, inode blocks if lost can corrupt entire
filesystem

E.g. imagine losing the root directory

*These blocks are usually scheduled for immediate write to disk
—Data blocks if lost corrupt only the file that they are
associated with

*These blocks are only scheduled for write back to disk periodically

In UNIX, flushd (flush daemon) flushes all modified blocks to disk
every 30 seconds

40

File System Consistency

Alternatively, use a write-through cache
—All modified blocks are written immediately to disk
—Generates much more disk traffic

—Temporary files written back
—Multiple updates not combined

—Used by DOS

*Gave okay consistency when

»Floppies were removed from drives
»Users were constantly resetting (or crashing) their machines

—Still used, e.g. USB storage devices

41

[Tgees
Ry

Consistency Case study: ext3
FS

==Y THE UNIVERSITY OF
_ NEW SOUTH WALES

q
Py

ext2fs reliability

» Disk writes are buffered in RAM
— OS crash or power outage ==> lost data

— Commit writes to disk periodically (e.g., every
30 sec)

— Use the sync command to force a FS flush
* FS operations are non-atomic

— Incomplete transaction can leave the FS in an
iInconsistent state

SE THE UNIVERSITY OF
NEW SOUTH WALES

ext2fs reliabllity

dir entries I-nodes data blocks

-—

—

« Example: deleting a file
1.Remove the directory entry

2.Mark the i-node as free
3.Mark disk blocks as free

SR THE UNIVERSITY OF
NEW SOUTH WALES

ext2fs reliabllity

dir entries I-nodes data blocks

AT_’-Z»

« Example: deleting a file
1.Remove the directory entry--> crash
2.
3.

The I-node and data blocks are lost

SR THE UNIVERSITY OF
NEW SOUTH WALES

ext2fs reliabllity

dir entries I-nodes data blocks

« Example: deleting a file
1.Mark the i-node as free --> crash
2.
3.

The dir entry points to the wrong file

SR THE UNIVERSITY OF
NEW SOUTH WALES

ext2fs reliabllity
dir entries I-nodes data blocks

2B

— 3 — 1

H B

—7

|

« Example: deleting a file
1.Mark disk blocks as free --> crash
2.
3.

The file randomly shares disk blocks with other files

SR THE UNIVERSITY OF
NEW SOUTH WALES

ext2fs reliability

o e2fsck

— Scans the disk after an unclean shutdown and
attempts to restore FS invariants

 Journaling file systems
— Keep a journal of FS updates
— Before performing an atomic update sequence,
— write it to the journal

— Replay the last journal entries upon an unclean
shutdown

. — Example: ext3fs

SE THE UNIVERSITY OF
NEW SOUTH WALES

The ext3 file system

« Design goals
— Add journaling capability to the exi2 FS
— Backward and forward compatibility with ext2
 Existing ext2 partitions can be mounted as ext3
— Leverage the proven ext2 performance
— Reuse most of the ext2 code base
— Reuse ext2 tools, including e2fsck

Bk [HE UNIVERSITY OF 49

The ext3 journal

Option1: Journal FS data
structure updates

« Example:

Start transaction

Delete dir entry

Delete i-node

Release blocks 32, 17, 60
End transaction

Option2: Journal disk block
updates

« Example:

Start transaction

Update block #n1 (contains the
dir entry)

Update block #n2 (i-node
allocation bitmap)

Update block #n3 (data block
allocation bitmap)

Add transaction

Question: which approach is better?

50

The ext3 journal

Option1: Journal FS data
structure updates

v Efficient use of journal space;
hence faster journaling

X Individual updates are applied

separately

X The journaling layer must
understand FS semantics

Option2: Journal disk block
updates

X Even a small update adds a whole
block to the journal

v Multiple updates to the same
block can be aggregated into a
single update

v The journaling layer is FS-
independent (easier to implement)

Ext3 implements Option 2

51

Journaling Block Device (JBD)

« The ext3 journaling layer is called
Journaling Block Device (JBD)

« JBD interface ext3fs
— Start a new transaction lstart, update,
— Update a disk block as part of a complete
transaction JBD
— Complete a transaction
« Completed transactions are I 1
cached in RAM Block
. Journal
device

H}- THE UNIVERSITY OF 52

Journaling Block Device (JBD)

« JBD interface (continued)

— Commit: write transaction data to the
journal (persistent storage)

| | ext3fs
« Multiple FS transactions are
committed in one go l start, update,
— Checkpoint: flush the journal to the complete
disk

« Used when the journal is full or the
FS is being unmounted

v v

Journal

Block
device

= - THE UNIVERSITY OF 53

Transaction lifecycle

in progress Updates are cached in RAM
Updates are cached in RAM; no additional
completed

updates are allowed in the same transaction

l Updates are written to the journal and
committed marked as committed. Transaction can be
l replayed after an unclean unmount

Updates are written to the file system; the
transaction is removed from the journal

o4

checkpointed

Journaling modes

« EXxt3 supports two journaling modes

— Metadata+data
« Enforces atomicity of all FS operations

— Metadata journaling
« Metadata is journaled
« Data blocks are written directly to the disk
* Improves performance
« Enforces file system integrity

« Does not enforce atomicity of write's
— New file content can be stale blocks

55

JBD

« JBD can keep the journal on a block device or in a file

— Enables compatibility with ext2 (the journal is just a
normal file)

« JBD is independent of ext3-specific data structures
— Separation of concerns
* The FS maintains on-disk data and metadata
 JBD takes care of journaling
— Code reuse

« JBD can be used by any other FS that requires
journaling

e
H}- THE UNIVERSITY OF 56

