4/12/2016

File Management

Tanenbaum, Chapter 4

COMP3231
Operating Systems

Kevin Elphinstone

THE UNIVERSITY OF 1
NEW SOUTH WALES

Outline

*Files and directories from the programmer
(and user) perspective

*Files and directories internals — the
operating system perspective

THE UNIVERSITY OF 2
NEW SOUTH WALES

A Dbrief history of file systems

Early batch processing systems

—No OS

—I/O from/to punch cards

—Tapes and drums for external storage, but no FS

—Rudimentary library support f
drums = —

IBM 709 [1958]

THE UNIVERSITY OF
NEW SOUTH WALES

A Drief history of file systems

*The first file systems were single-
level (everything in one directory)
+Files were stored in contiguous
chunks

—Maximal file size must be known in
advance

*Now you can edit a program and
save it in a named file on the tape!

PDP-8 with DECTape [1965]

THE UNIVERSITY OF 4
NEW SOUTH WALES

A brief history of file systems
*Time-sharing OSs

—Required full-fledged file systems

*MULTICS

—Multilevel directory structure (keep files that belong to
different users separately)

—Access control lists
—Symbolic links

Honeywell 6180 running
MULTICS [1976]

THE UNIVERSITY OF
NEW SOUTH WALES

A brief history of file systems

*UNIX

—Based on ideas from
MULTICS

—Simpler access control
model

—Everything is a file!

PDP-7

THE UNIVERSITY OF
NEW SOUTH WALES

4/12/2016

Summary of the FS abstraction

Uniform namespace Heterogeneous collection of storage

devices

Hierarchical structure Flat address space

Arbitrarily-sized files Fixed-size blocks

Symbolic file names Numeric block addresses

Contiguous address space inside a file Fragmentation

Access control No access control

Tools for

* Formatting

* Defragmentation

¢ Backup

* Consistency checking

THE UNIVERSITY OF 7
NEW SOUTH WALES
L

Syscall interface:
creat
open
read
write

OS storage stack

FD table
OF table
VFS
FS
Buffer cache
Disk scheduler
Device driver

B

Operating
System

B st 8
L
OS storage stack OS storage stack
Application /ﬁ Application
Hard disk platters: FD table Disk controller: FD table
tracks
SEEER OF table Hides disk geometry, QF it
VFS bad sectors VFS
e FS Exposes linear FS
SES - Buffer cache sequence of blocks Buffer cache
T Disk scheduler Disk scheduler
Device driver Device driver
E Rl SOV Waie 9 E Rl SOV Waie 10
== ==
OS storage stack OS storage stack
/ﬁ Application Application
Device driver: FD table File system: FD table
Hides device-specific SIF R Hides physical location SIF R
protocol VFS of data on the disk VFS
Exposes block-device FS FS
Interface (linear Buffer cache Exposes: directory Buffer cache
sequence of blocks) B caieali hierarchy, symbolic file i caieali
== names, random-access —
‘ | ‘ . ‘ | ‘ ‘ Device driver files, protection Device driver
[[
0 N | = | Ed
E AT 11 E AT 12
L L

4/12/2016

OS storage stack

Application

Optimisations: FD table
Keep recently accessed OF table
disk blocks in memory VFS

FS

Schedule disk accesses Buffer cache
from multiple processes |

Disk scheduler
Device driver

for performance and
fairness

Virtual FS:
FD table
Unified interface to OF table
multiple FSs VFS
Fs |] Fs2

OS storage stack

Application

Buffer cache
Disk scheduler Disk scheduler
Device driver Device driver

E THE UNIVERSITY OF 13 E THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
L L
OS storage stack OS storage stack
Application Application
File desctriptor and
Open file tables: FD table FD table
oo e es OF table OF table
[
opened by user-level S VUGS
processes FS FS
Implement semantics Buffer cache Buffer cache
of FS syscalls Disk scheduler Disk scheduler
Device driver Device driver
E R SOUTIT WAL 15 E R SOUTIT WAL 16
L L

File Names

» File system must provide a convenient naming
scheme
* Textual Names

* May have restrictions
Only certain characters
E.g. no 7 characters
Limited length
Only certain format
EgDOS,8+3
+ Case (in)sensitive
» Names may obey conventions (.c files or C files)
Interpreted by tools (UNIX)
Interpreted by operating system (Windows)

THE UNIVERSITY OF 17
NEW SOUTH WALES
L

THE UNIVERSITY OF 18
NEW SOUTH WALES

File Structure Abstractions

1Byte 1 Record
[t [For J P |
cat [cow [cog jon Pony [| Rat [[worm]
(@ ® C]

*Three kinds of files

—byte sequence

—record sequence

—key-based, tree structured

+e.g. IBM’s indexed sequential access method (ISAM)

4/12/2016

File Structure Abstractions

Stream of Bytes Records
» OS considers a file to be « Collection of bytes treated
unstructured as a unit
« Simplifies file « Example: employee
management for the OS record
« Applications can impose « Operations at the level of

their own structure records (read_rec,
« Used by UNIX, Windows, write_rec)
most modern OSes « File is a collection of
similar records

« OS can optimise
operations on records

THE UNIVERSITY OF
NEW SOUTH WALES
L

File Structure Abstractions

*Tree of Records

—Records of variable length
—Each has an associated key
—Record retrieval based on key

—Used on some data processing systems (mainframes)
*Mostly incorporated into modern databases (e.g., key-value stores)

THE UNIVERSITY OF 20
NEW SOUTH WALES
L

File Types

*Regular files
+Directories
*Device Files

—May be divided into

«Character Devices — stream of bytes
+Block Devices

*Some systems distinguish between regular file types
—ASCI| text files, binary files

File Access Types

*Sequential access
—read all bytes/records from the beginning
—cannot jump around, could rewind or back up
—convenient when medium was magnetic tape
*Random access
—bytes/records read in any order
—essential for data base systems

—read can be ...
*move file pointer (seek), then read or
—Iseek(location,...);read(...)
«each read specifies the file pointer
—read(location,...)

THE UNIVERSITY OF
NEW SOUTH WALES
L

E THE UNIVERSITY OF 21 E THE UNIVERSITY OF 22
NEW SOUTH WALES NEW SOUTH WALES
L= L=
Attribute Meaning

Protection ‘Who can access the file and in what way

Password Password needed to access the file . C re ate oAppe nd

Creator ID of the person who created the file

Owner Current owner

Read-only flag 0 for readiwrite:; 1 for read only . Delete .Seek

Hidden llag 0 for normal; 1 for do not disp\ay in |IS|If|gS

System flag 0 for normal files; 1 for system file | .

Archive flag 0 for has been backed up; 1 for needs to be backed up . Open .Get attrlbutes

ASCllfbinary flag 0 for ASCII file; 1 for binary file

Random access flag | 0 for sequential access only: 1 for random access .

Temporary flag 0 for normal; 1 for delete file an process exit . Close ,Set Attnbutes

Lock flags. 0 for unlocked; nonzero for locked

Record length Number of bytes in a record

_Key position Offset of the key within each record Read . Re n am e

_Key length Number of bytes in the key field *

_Creation time Date and time the file was created

Time of last access | Date and time the file was last accessed W rlte

_Time of last change | Date and time the file has last changed .

Current size Number of bytes i the file

Maximum size Number of bytes the file may grow to

23

THE UNIVERSITY OF 24
NEW SOUTH WALES
L

4/12/2016

(1/2)

/+ File copy program. Error checking and reporting is minimal. */

#include <sys/types.h>
#include <fentl.h>
#include <stdlib.h>
#include <unistd.h>

/* include necessary header files */

int main(int arge, char *argv(]); /+ ANSI prototype */

#define BUF _SIZE 4096
#define OUTPUT _MODE 0700

/* use a buffer size of 4096 bytes */
/* protection bits for output file */

int main(int arge, char *argv(])
{

intin_fd, out_fd, rd_count, wt_count;
char buffef[BUF _SIZE];

if (arge != 3) exit(1);

THE UNIVERSITY OF 25
NEW SOUTH WALES
L

/+ syntax error if arge is not 3 */

An Example Program Using File System Calls

An Example Program Using File System Calls
(2/2)

I+ Open the input file and create the oulput file */

in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file =/
if (out_fd < 0) exit(3); /= if it cannot be created, exit */

/= Gopy loop */
while (TRUE) {
rd_count = read(in_Id, buffer, BUF _SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out _fd, buffer, rd_count); /* write data */
if (wt_count <= Q) exit(4); /*wt_count <= 0 i$ an error */
}

/= Close the files */

close(in_fd);

close(out _fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /= error on last read */

THE UNIVERSITY OF 26
NEW SOUTH WALES
L

File Organisation and Access
Programmer’s Perspective

*Given an operating system supporting
unstructured files that are a stream-of-bytes,

how can one organise the contents of the files?

THE UNIVERSITY OF 27
NEW SOUTH WALES
L=

File Organisation and Access
Programmer’s Perspective

*Possible access patterns:

—Read the whole file

—Read individual blocks or records from a file

—Read blocks or records preceding or following the current one
—Retrieve a set of records

—Write a whole file sequentially

—Insert/delete/update records in a file

—Update blocks in a file

Programmers are free to structure the file to suit the application.

THE UNIVERSITY OF 28
NEW SOUTH WALES
L=

Criteria for File Organization

Things to consider when designing file layout
*Rapid access
—Needed when accessing a single record

—Not needed for batch mode
read from start to finish

*Ease of update

—File on CD-ROM will not be updated, so this is not a concern
*Economy of storage

—Should be minimum redundancy in the data

—Redundancy can be used to speed access such as an index

THE UNIVERSITY OF 29
NEW SOUTH WALES
L

File Directories

*Provide mapping between file names and
the files themselves
«Contain information about files

—Attributes

—Location

—Ownership
+Directory itself is a file owned by the
operating system

THE UNIVERSITY OF 30
NEW SOUTH WALES
L

4/12/2016

bin |=— Root directory

etc

lib

usr
e %\

i jim
—— 3 —— Jusr/jim
Th — 31
N

Hierarchical (Tree-Structured)
Directory

*Files can be located by following a path from the
root, or master, directory down various branches
—This is the absolute pathname for the file

*Can have several files with the same file name as
long as they have unique path names

THE UNIVERSITY OF 32
NEW SOUTH WALES
L

Current Working Directory

*Always specifying the absolute pathname
for a file is tedious!
«Introduce the idea of a working directory

—Files are referenced relative to the working
directory

*Example: cwd = /home/kevine
.profile = /home/kevine/.profile

THE UNIVERSITY OF 33
NEW SOUTH WALES
L=

Relative and Absolute
Pathnames

*Absolute pathname

—A path specified from the root of the file system to the file
*A Relative pathname

—A pathname specified from the cwd

*Note: ‘.’ (dot) and *..” (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine
../../etc/passwd

/etc/passwd
../kevine/../.././etc/passwd
Are all the same file

THE UNIVERSITY OF
E NEW SOUTH WALES 34
L=

Typical Directory Operations

.Create . Readdir
.Delete . Rename
.Opendir . Link
.Closedir . Unlink

NEW SOUTH WALES

Nice properties of UNIX naming

*Simple, regular format

—Names referring to different servers, objects, etc., have
the same syntax.

*Regular tools can be used where specialised tools would be
otherwise be needed.

Location independent

—Obijects can be distributed or migrated, and continue
with the same names.

Where is /home/kevine/.profile?
You only need to know the name!

THE UNIVERSITY OF 36
NEW SOUTH WALES
L

4/12/2016

An example of a bad naming
convention

*From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BINJCAT_V.EXE;13

E THE UNIVERSITY OF 37
NEW SOUTH WALES
L

File Sharing

In multiuser system, allow files to be shared
among users
*Two issues

—Access rights

—Management of simultaneous access

E THE UNIVERSITY OF 38
NEW SOUTH WALES
L

Access Rights

*None

—User may not know of the existence of the file
—User is not allowed to read the directory that
includes the file

*Knowledge

—User can only determine that the file exists and
who its owner is

THE UNIVERSITY OF
E NEW SOUTH WALES 3
L=

Access Rights

*Execution
—The user can load and execute a program but
cannot copy it

*Reading
—The user can read the file for any purpose,
including copying and execution

*Appending
—The user can add data to the file but cannot
modify or delete any of the file’s contents

THE UNIVERSITY OF
E NEW SOUTH WALES 40
L=

Access Rights

*Updating
—The user can modify, deleted, and add to the
file’s data. This includes creating the file,
rewriting it, and removing all or part of the data

*Changing protection

—User can change access rights granted to
other users

*Deletion
—User can delete the file

E THE UNIVERSITY OF 41
NEW SOUTH WALES
L

Access Rights

*Owners
—Has all rights previously listed
—May grant rights to others using the following
classes of users
*Specific user
*User groups
«All for public files

E THE UNIVERSITY OF 42
NEW SOUTH WALES
L

4/12/2016

Case Study:
UNIX Access Permissions

total 1704

drwxr-x---— 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x---— 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x---— 2 kevine kevine 4096 Oct 14 08:12 backup
—rW-r—-—-—-— 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rw-r-----— 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

*First letter: file type
d for directories
- for regular files
*Three user categories
user, group, and other

UNIX Access Permissions

total 1704

drwxr-x---— 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x---— 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x---— 2 kevine kevine 4096 Oct 14 08:12 backup
—rW-r—-—-—-— 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rw-r-----— 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

*Three access rights per category
read, write, and execute
drwxrwxrwx

user group other

*Execute permission for directory?
—Permission to access files in the directory

*To list a directory requires read permissions
*What about drwxr—-x—x?

THE UNIVERSITY OF 45
NEW SOUTH WALES
L=

THE UNIVERSITY OF 43 E THE UNIVERSITY OF 44
NEW SOUTH WALES NEW SOUTH WALES
Lo Lo
UNIX Access Permissions UNIX Access Permissions
total 1704 *Shortcoming
dewxz-x--- 3 kevine kevine 4096 Oct 14 08:13 . —The three user categories are rather coarse
drwxr—x-—--— 3 kevine kevine 4096 Oct 14 08:14 .. .
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup *Problematic examp|e
—rw-r-———— 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg —Joe owns file foo.bar
—rW-r—-—-—--— 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

—Joe wishes to keep his file private
«Inaccessible to the general public

—Joe wishes to give Bill read and write access

—Joe wishes to give Peter read-only access

Simultaneous Access

*Most OSes provide mechanisms for users to manage
concurrent access to files
—Example: flock(), lockf(), system calls
*Typically
—User may lock entire file when it is to be updated
—User may lock the individual records (i.e. ranges) during the
update
*Mutual exclusion and deadlock are issues for shared
access

THE UNIVERSITY OF 47
NEW SOUTH WALES
L

THE UNIVERSITY OF 46
NEW SOUTH WALES
L=

