Processes and Threads

2 T UNIVERSITY O 1

NEW SOUTH WALES

Learning Outcomes

» An understanding of fundamental concepts of
processes and threads

S T UNIVERSITY O 2
B NEW SOUTH WALES

Major Requirements of an
Operating System
* Interleave the execution of several
processes to maximize processor

utilization while providing reasonable
response time

+ Allocate resources to processes

 Support interprocess communication and
user creation of processes

THE UNIVIRSITY O 3
NEW SOUTH WALES

Processes and Threads

» Processes:
— Also called a task or job
— Execution of an individual program
— “Owner” of resources allocated for program execution
— Encompasses one or more threads
» Threads:
— Unit of execution

— Can be traced
« list the sequence of instructions that execute

— Belongs to a process

THIE UNIVIRSITY O 4
NEW SOUTH WALES

Address Nain Memory Program Coun|
0 — |
Dispatcher
5000
Execution snapshot Process A
of three single-
threaded processes
(No Virtual Process I
Memory) o
Process C

Figure 3.1 Snapshot of Example Execution (Figure
i 13

Logical Execution Trace

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5008 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011

(a) Trace of Process A (b) Trace of Process B (¢) Trace of Pracess C'

5000 = Starting address of program of Process &
8000 = Statting address of program of Process B
12000 = Starting address of program of Process C

Figure 32 Traces of Processes of Figure 3.1

1 5000 7 12004
2 001 8 12005
3 5002 e —— T T
5 e » -The P Model
Combined Traces soaw 3 om Summary: The Process Mode
T 100 Ex] 104
(Actual CPU P B (o prcgr curte
Instructions) i - Four program counters
12105 33009 A | Process
13 000) 010 = switch
i3 o O M o Ly ©
16 8003 41 w0 1
T a2 m c
17 100 a3 102
2101 44 103 =
What are the 15 1m P NI
ions? A s @ g
shaded sections 2 103 48 12007 (@) (b) (©
23 12000 a8 12008
¥ Dme 5 1o . .
% Lo 2w * Multiprogramming of four programs
» Conceptual model of 4 independent, sequential
) processes (with a single thread each)
second and fowth cohurs show address of instudtionbeing exsmated E-L Only one program aC“Ve at any |nStant
Figure 3.3 Combined Trace of Processes of Figure 3.1 | 58
1
s : s S 5 Process and thread models of
1
1
; selected OSes
e thread : mlpl theads « Single process, single thread
1

- MSDOS
» Single process, multiple threads

— 0S/161 as distributed
! » Multiple processes, single thread

— Traditional unix
iltple proceses » Multiple processes, multiple threads

multiple threads per process

multiple processes
one thread per process

— Modern Unix (Linux, Solaris), Windows
Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
threads (for historical reasons)

@ T UNIVIRSITY Ol 10
NEW SOUTH WALES

$ = Instruction trace

Figure 41 Threads and Processes [ANDE97]

Process Creation Process Termination
Principal events that cause process creation
1. System initialization Conditions which terminate processes
« Foreground processes (interactive programs) .
+ Background processes 1. Normal exit (voluntary)

Email server, web server, print server, etc.

Called a daemon (unix) or service (Windows) Error eXit (VO|Uﬂtary)

2.

2. Execution of a process creation system call by a 3. Fatal error (involuntary)
running process)
4

« New login shell for an incoming telnet/ssh connection
3. User request to create a new process
4. Initiation of a batch job
Note: Technically, all these cases use the same
system mechanism to create new processes.

Killed by another process (involuntary)

B THIL UNIVERSITY OF 1

B THIL UNIVERSITY OF 12
NEW SOUTH WALES N

EW SOUTH WALES

Process/Thread States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

» Possible process/thread states
— running
— blocked
— ready

« Transitions between states shown

S| T1I UNIVIRSITY O 13
NEW SOUTH WALES

Some Transition Causing

Events

Running — Ready

—Voluntary Yield()

— End of timeslice
Running — Blocked

— Waiting for input

« File, network,
— Waiting for a timer (alarm signal)
— Waiting for a resource to become available

S| T1I UNIVIRSITY O
NEW SOUTH WALES

Dispatcher

» Sometimes also called the scheduler
— The literature is also a little inconsistent on
with terminology.
» Has to choose a Ready process to run
—How?

— ltis inefficient to search through all
processes

Bl T! 11 UNIVIRSITY OI 15
28] NEW SOUTH WALES

The Ready Queue

Queune

Enter

Dispatch Exit

Pause

(b) Queuling dlagram

[2 T UNIVIRSITY O 16
28] NEW SOUTH WALES

What about blocked processes?

» When an unblocking event occurs, we also
wish to avoid scanning all processes to
select one to make Ready

S| T1I UNIVIRSITY O 17
NEW SOUTH WALES

Using Two Queues

Ready Queue

Release
Admit Dispatch
e IRRNNE e
Timeout
Blocked Queue 3
Event Event Walt
‘Occurs

(a) Single blocked queue

S| T1I UNIVIRSITY O 18
B NEW SOUTH WALES

Release

Processor

Evenl 1 Walt

Event 2 Walt

Event n Wait

Admit Disy
I
A
i Timeout
Event 1 Queue
Event 1 e
Occurs
Event 2 Queue
Event 2 a
Oceurs i
¥
¥
¥
Event n Queue
Evenin
Occurs -

{b) Multiple blocked queues

Implementation of Processes

» A processes’ information is stored in
a process control block (PCB)

* The PCBs form a process table

27

— Sometimes the kernel stack for each

P6

process is in the PCB

RS)

— Sometimes some process info is on the

P4

kernel stack

P3

« E.g. registers in the trapframe in OS/161

P2

— Reality is much more complex (hashing,

chaining, allocation bitmaps,...)

PO

THE UNIVERSITY O
NEW SOUTH WALES

20

=

Implementation of Processes

RougE AT

8¢ LG peremeiers
Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

. Example fields of a process
T UNIVIRSITY O
NEW SOUTH WALES

table entry

Threads
The Thread Model

Process 1 Process

Process 1 Process 1

v |

User
space

Kernel

Thread Thread
Kernel
space Kernel

(a) (b)

(a) Three processes each with one thread
_(b) One process with three threads

THIE UNIVIRSITY O
NEW SOUTH WALES

22

The Thread Model — Separating
execution from the environment.

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

» Items shared by all threads in a process

* Items private to each thread

THE UNIVERSITY O
NEW SOUTH WALES

=

23

Threads Analogy

e

The Hamburger Restaurant

THE UNIVERSITY O
NEW SOUTH WALES

=

24

Single-Threaded Restaurant

Blocking
operations
delay all
activities

THE UNIVIRSITY Of 25
NEW SOUTH WALES

=

Multithreaded Restaurant

Note: Ignoring synchronisation issues for now

Bu Burger Cooks

inis
THE UNIVIRSITY Of 26
NEW SOUTH WALES

=

Multithreaded Restaurant
with more worker threads

%" ta”

S T UNIVIRSITY O 27
NEW SOUTH WALES

Finite-State Machine Model
(Event-based model)
Input
Events Non-
Blocking
actions
External
activities
ol e 2

The Thread Model

Thread 2

Thread 1 Thread 3
\ /

25l
Thread 1's — E E E

stack

t— Thread 3's stack

Kernel

Each thread has its own stack

THE UNIVIRSITY Of 29
NEW SOUTH WALES

=

Thread Model

* Local variables are per thread
— Allocated on the stack

» Global variables are shared between all threads
— Allocated in data section
— Concurrency control is an issue

» Dynamically allocated memory (malloc) can be
global or local
— Program defined (the pointer can be global or local)

THE UNIVIRSITY OI 30
NEW SOUTH WALES

=

Observation: Computation State

Thread Model Finite State (Event) Model
= =)
() [E=]
m m

+ State implicitly storedon + State explicitly managed
the stack. by program

THIL UNIVIRSITY O1 31
NEW SOUTH WALES

=

Thread Usage

Kernel
Disk

Keyboard

A word processor with three threads

THIL UNIVERSITY O1 32
NEW SOUTH WALES

=

Thread Usage

Web server process

Dispatcher thread
Worker thread User
space
Web page cache
Kernel
Kernel space
Network
connection

@ TI I LUNIVI RSITVO\A mUItithreaded Web server

NEW SOUTH WALES

Thread Usage

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)
read_page_from_disk(&buf, &page);
return_page(&page);

(@) (6)

» Rough outline of code for previous slide
(a) Dispatcher thread

(b) Worker thread — can overlap disk I/O with
execution of other threads

@ T1 I UNIVIRSITY O 34

NEW SOUTH WALES

Thread Usage

saEsen Iens Ne pamllalism, mioe
mgching Paallslis, nor v ls, interpis

Three ways to construct a server

THIL UNIVIRSITY O1 35
NEW SOUTH WALES

=

Summarising “Why Threads?”

+ Simpler to program than a state machine
» Lessresources are associated with them than a
complete process
— Cheaper to create and destroy
— Shares resources (especially memory) between them
» Performance: Threads waiting for I/O can be overlapped
with computing threads
— Note if all threads are compute bound, then there is no
performance improvement (on a uniprocessor)
» Threads can take advantage of the parallelism available
on machines with more than one CPU (multiprocessor)

THIL UNIVIRSITY O1 36
NEW SOUTH WALES

=

