Page Tables Revisited

S
SR THE UNIVERSITY OF
a0 NEW SOUTH WALES

(&

Learning Outcomes

* An understanding of virtual linear array
page tables, and their use on the MIPS
R3000.

» Exposure to alternative page table
structures beyond two-level and inverted
page tables.

==
LRl] THE UNIVERSITY OF
NEW SOUTH WALES

Virtual Address

Frame # Offset

Page # | Offset

Reglster

Fage Tahle Pt

Page Table

Frame

Dﬂset‘ } Page

Pagedt

@

SEEEL SE—Y | Frame #

O

Paging Mechanism Main Memory

| - O O O e O O O O B O B O R | e e e e -
=
| - . . . O O O O O R O O O O O O O O . O o -

E Fi‘g\ure 8.3 Address Translation in a Paging System
P

Two-level Translation

Virtual Address

10 bits | 10 hits | 12 hits Frame # Offset

Koot page
talle ptr

Page
Frame

d-kbyle page
Rl page table table icontains
.) 024 PTEs)
(contains 1024 PTEs) 1024 PTEs)

Wi

Program Paging Mechanism Main Memory

R3000 TLB Refill

« (Can be optimised for TLB refill + Anexample routine
only mfcO0 kl,CO_CONTEXT
— Does not need to check the mfcO0 kO,CO_EP[T # mfcO0 delay
exception type # slot

— Does not need to save any 1w k1,0 (k1)

registers o # fault (k| = orig EPC)
» It uses a specialised
assembly routine that only nop
uses kO and k1. mtcO0 k1,CO_E LO
— Does not check if PTE exists nop
» Assumes virtual linear array — tlbwr
see extended OS notes jr kO
rfe
« With careful data structure :
choice, exception handler can How does this
be made very fast work?
THE UNIVERSITY OF

= NEW SOUTH WALES

Virtual Linear Array page table

« Assume a 2-level PT
« Assume 2"%-level PT nodes are in virtual memory

« Assume all 2"9-level nodes are allocated contiguously =
2"d-level nodes form a contiguous array indexed by page

number
|

4-kbyte root
page table

4-Ghyte virtual address space
4-Mbyte page table

Virtual Linear Array Operation

4-kbyte root
w\\

page table

4-Ghyte virtual address space 4-Mbyte page table
* Index into 2nd level page table without referring to root
PT!

« Simply use the full page number as the PT index!
« Leave unused parts of PT unmapped!

 If access is attempted to unmapped part of PT, a
secondary page faultis triggered
— This will load the mapping for the PT from the root PT
— Root PT is kept in physical memory (cannot trigger page faults)

ZL] THE UNIVERSITY OF !
NEW SOUTH WALES

Virtual Linear Array Page Table

« Use Context register to simply
load PTE by indexing a PTE
array in virtual memory

* Occasionally, will get double

fau ItS 4-kbyte root
— A TLB miss, while servicing a TLB page table
miss
— Handled by general exception
handler .
H B | |

4-Ghyte virtual address space
4-Mbyte page table

/PTEbase In virtual
memory in kseg2
* Protected from

: user access

L1 THE UNIVERSITY OF

NEW SOUTH WALES \ /

c0 Context Register

A1 21 20 Z 1 {J

PTEBEase sad VPN 0

 c0_Context = PTEBase + 4 * PageNumber

— PTEs are 4 bytes

— PTEBase is the base local of the page table array (note: aligned
on 4 MB boundary)

— PTEBase is (re)initialised by the OS whenever the page table
array is changed
« E.g on a context switch
— After an exception, cO_Context contains the address of the PTE
required to refill the TLB.

10

Code for VLA TLB refill handler

Load PTE mfcO0 kl,CO_CONTEXT

address from mfc0 kO0,CO_EPC
context register 1w k1,0 (k1)

mfcO0 delay slot
may double fault
(kO = orig EPC)

nop
Move the PTE mtcO k1,CO_ENTRYLO Hote| gl o
into EntryLo. instruction to
nop return to
tlbwr
jr kO
rfe Load the PTE. \
Note: this load can cause a
Write EntryLo TLB refill miss itself, but
into random TLB this miss is handled by the
entry. Return from the general exception vector.
exception The general exception
vector has to understand
this situation and deal with

w appropriately

Software-loaded TLB

* Pros
— Can simplify hardware design

— provide greater flexibility in page table
structure

« Cons

— typically have slower refill times than
hardware managed TLBs.

EE
B! THE UNIVERSITY OF
NEW SOUTH WALES

12

Design Tradeoffs for Software-Managed TLBs
David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest Trevor
Mudge & Richard Brown

ISCA '93 Proceedings of the 20th annual international symposium on computer

architecture

=
R THE UNIVERSITY OF

e NEW SOUTH WALES

Trends at the time

« QOperating systems
— moving functionality into user processes

— making greater use of virtual memory for mapping data
structures held within the kernel.

« RAM is increasing
— TLB capacity is relatively static

e Statement:

— Trends place greater stress upon the TLB by increasing miss
rates and hence, decreasing overall system performance.

— True/False? How to evaluate?

L] THE UNIVERSITY OF
NEW SOUTH WALES

14

Software Trap on TLB Miss

Tapeworm\
r_ Kernel Code (Unmapped Space)

Policy Tapeworm
Functions

/S N\ :
7 \ Simulated TLB

(128 Slots)

TLB Miss Handlers |«

Page Tables Aﬁ_uBa'
(Mapped Space) (64 Slots)

Figure 1: Tapeworm

The Tapeworm TLB simulator is buik into the operating system and is
invoked whenever there Is a real TLB miss. The simulator uses the real TLB
misses to simulate ks own TLB configuration(s). Because the simulator

resides in the operating system, Tapeworm captures the dynamic hature of
the system and avoids the problems associated with simulators driven by

static traces.

B
L THE UNIVERSITY OF
S NEW SOUTH WALES

Lisar

Page

L1

L1U PTE

Each PTE maps one,
4K pags of usar taxi or
data.

Kameal
ata
ape

—

L1K PTE
Each PTE maps ona, 4K
pape of kemal laxi of

L3

Each L3 PTE maps 1 pape

L2 PTE
Each L2 PTE maps | o2&
Lo one, 1,024 enlry user
page table page.
Virlual Address Space
L3I PTE Piwsical Addrass Space

of either L2 PTEs or L1K

PTEs.

W[

s %l NEW SOUTH WALES

Figure 2: Page Table Structure in OSF/A and Mach 3.0

The Mach pags tables lformn a 3-eval structure with the first two levels resld-
ing in vinual (mapped) space. The top of the page table stiructure holds the
usar pages which are mapped by kvel 1 user (L1U) PTEs. Thase L1U PTEs
are stored in the L1 page table with each lask having s own sat of L1 paga
tablas.

Mapping the L1 page iables ame the level 2 (L2) PTEs. Thay are stored In tha
L2 page tables which hold both L2 PTEs and level 1 kemel (L1K) PTEs. In
tum, the L2 pages are mapped by the level 3 (L3) PTEs stored In the L3
pago table. At Doot thime, the L3 page 1able s fixed In unmapped physical
memory. This serves as an anchor to the page table hierarchy because relar
ances lo the L3 page table do not go through thae TLB.

The MIPS A2000 architeciure has a fived 4 KByle page size. Each PTE
requires 4 byles of slorage. Therafore, a singie L1 page table page can hold
1.024 L1U PTEs, or 4 Megabytes of virual address spaca. Likewiss, the L2
pape lables can directly map elther 4 Megabytes of kemel data or indirectty
map 4 GBytes of L1U data,

16

TLB Miss Typs | Ultrix | OSFA Mach 3.0
16 20

L1K 333 355 204

12 294 511 07

= — = sl

Modity 375 436 499

Irvakd 336 o7 267

Table 3: Costs for Different TLB Miss Types

This table shows the number of machine cycles (at 60 na/cycle) required 1o
sanvice diffarent typea of TLB missas, To delerming these costs, Monster

was used fo collect a 128K-eniry histogram of 1imings for aach typa of miss.
categories

We separale TLB miss lypes imo the six

described balow. Nola

that Ulrix does not have L3 misses bacausa R implements a 2-level page

LU
L1K

L2

L3

TLE mi=s on a lavel 1 usar PTE.
TLE mi=zz on a laval 1 kamal PTE.

TLE miss on kevel 2 PTE. This can only occur affer a
mias on & kevel 1 user PTE.

TLE mizs on a level 3 PTE. Can occur afler alther a
vl 2 miss or a eval 1 kemeal miss,

A page protection violation.
An access to an page marked as invalld (page faull).

17

Note the TLB miss costs

« What is expected to be the common case?

Flle system, networking, scheduling and Unix
interface reside Inside a monolithic kemel.
Kernel text resides in unmapped space.
Ultrix places most kemnel data structures in
unmapped space while OSF/1 uses mapped
space for many of s kemel data structures.

{

19

File system, networking, and Unix interface
reside inside the monolithic Unix Server. Ker-

nel text and some dala reside in unmapped
vitual space but the Unix Server Is in
mapped user space.

20

Same as standard Mach 3.0, but with increased
functionality provided by a server task. The AFS
Cache Manager Is either inside the Unix Server
or in its own, userlevel server (as pictured
abova).

21

Measurement Results

System T°“'3:)“"" LU L1K L2 L3 Invalid Modify Total
Ultrix 583 9,021,420 135,847 3,828 16,191 115 9177401
OSFA 892 9,817,502 1,500,973 34,972 207,163 79,200 42,490 11,691,398
Mach3 875 21.466,165 1,682,722 352,713 556,264 165,849 125,409 24,349,121
Mach3+AFSin 1371 30,123.212 2,493,283 330,803 650,441 168,429 127,245 33033413
Mach3+AFSOut 1,517 31,611,047 2,712,979 1,042,527 887,648 168,128 127,505 36,649,834

Table 5: Number of TLB Misses
Total TLB
System | Service Time L1u LIK L2 L3 Invalid Modify ::.::::
{sec)
U Rrix 11.82 B8.66 2.n a1 0.33 0.00 2.03%
OSFH 5185 11.78 32.16 1.07 440 1.32 1.1 5.81%
Mach3 80.01 25.76 29.68 8.61 955 2.66 3.75 8.21%
Mach3+AFSin 106.56 36.15 43.58 8.08 11.85 2.70 3., T.77%
Mach3+AFSOut 134.71 37.83 47.86 25.46 16.95 2.69 3.82 8.88%

Table 6: Time Spent Handling TLB Misses

These ables show the number of TLB misses and amount of time spemt handiing TLB misses for each of the operating systems
studied. in Ultrix, most of the TLB misses and TLB miss time is spent servicing L1U TLB misses. However, for OSF/1 and various
versions of Mach 3.0, L1K and L2 misses can overshadow the L1U miss time. The increase in Modify misses Is due to OSFA and

Mach 3.0's use of protection to implement copy-on-write memory sharing.

N

Specialising the L2/L1K miss vector

Previous
Tosl | New |
TPLOIPTE | Counts | Cost | Tolal | goeq
Table6 | (soc) | (%°¢)
(sec)
Mach3+AFSin
L1u 30,123 212 36.15 36.15 0.00
L2 330,803 8.08 0.79 7.29
LiK 2,493,283 43,08 2.99 40,99
L3 690,441 11.85 11.85 0.00
Modify 127,245 3.81 3.81 0.00
Invalid 168,429 2.70 270 0.00
Total 33,933,413 106.56 58.20 48.28

Table 7: Recomputed Cost of TLB Misses Given
Additional Miss Vectors (Mach 3.0)

Supplying a separate interrupt vector for L2 misses and allowing the uTLB

handier to service L1K misses reduces thelr cost to 40 and 20 cycles, respec- o3
tively. Thek contribution to TLB miss time drops from 8.08 and 43.98 seconds

down to 0.79 and 2.99 seconds, respectively.

Other performance
improvements?

* In Paper
— Pinned slots
— Increased TLB size
— TLB associativity

» Other options
— Bigger page sizes
— Multiple page sizes

B
Rl THE UNIVERSITY OF
NEW SOUTH WALES

24

ltanium Page Table

» Takes a bet each way
 Loading
— software
— two different format hardware walkers

» Page table
— software defined

— Virtual linear array
— Hashed

EE
B! THE UNIVERSITY OF
NEW SOUTH WALES

25

Per—region VHPT VPN | |VPN Global VHPT

Y
Hash
Short Format e Long Format
PPN PPN
- —~— —/ PKEY | psize
64 bits Tag
Chain
—

4 x 64 bits
26

what about the P47

e |.e. 32-bit x86 architecture.

=
k=l | HE UNIVERSITY OF
NEW SOUTH WALES

P4

» Sophisticated, supports:
—demand paging
— pure segmentation
— segmentation with paging

* Heart of the VM architecture
— Local Descriptor Table (LDT)
— Global Descriptor Table (GDT)

« LDT

—1 per process

—describes segments local to each process (code, stack,
data, etc.)

« GDT

—shared by all programs
— describes system segments (including OS itself)

? THE UNIVERSITY OF
NEW SOUTH WALES

P4

» To access a segment P4
—loads a selector in 1 of the segment registers

Bits —= 16 | 8 1 8
A X

AH AL EAX

1
BH 2 X BL EBX

CH CIX CL ECX

bH___ 2, bL EDX

ESI

EDI

EBP
ESP

Ccs

SS

Ds

ES

Fs

GS

| | EIP

| | EFLAGS

P4

* a P4 selector:

Bits 13 12
INDEX
0 = GDT]] Privilege level (0-3)
1=LDT]|

T
SL| THE UNIVERSITY OF
@8 NEW SOUTH WALES

P4 i determine LDT\
or GDT (and
* a P4 selector: privilege level)
Bits 13 1”2
INDEX 1 11
|
Q] ::(EBH Privilege level (0-3)

* when selector is in register, corresponding
segment descriptor is

— fetched by MMU
—loaded in internal MMU registers

* Next, segment descriptor is used to handle
memory reference (discussed later)

S8 T E UNIVERSITY OF

Bt LN
it NEW SOUTH WALES

P4

LDT > GDT:
Bits 13
INDEX 90.0 —.f zero these 3 bits A
and add the 16b to
base address of
LDT or GDT

4

P4

A 4

A 4

.',_L'lS.T GE'D:T

Bits 13 |
NDEX -~ |doo

- finds a a P4 code segment descriptor

oq : Relate
BASE 0-15 LIMIT 0-15 0

BASE 24-31 G|D|0| IMIT 16-19]P|DPL| TYPE BASE 16-23 | 4

A 1 L
0 :LIMIT is in bytes ‘ Segment type and protection
5~ ERR N e Privilege level (0-3)

0 : 16-bit segment [0: Segment is absent from memory
1 : 32-bit segment | 1:Segment is present in memory

=2
“- THE UNIVERSI
@il NFW SOUTH \

P4

» calculating a linear address from
selector+offset

Selector Offset
Descriptor l
Base address - @
i < Limit
| Other fields

Y
32-bit linear address

P4

IF no paging used: we are done

=> this is the physical address

ELSE
=>» linear address interpreted as virtual address
=» paging again!

BB THE UNIVERSITY OF

@88 NEW SOUTH WALES
B,

P4 with paging

e every process has page directory
— 1024 32bit entries
—each entry points to page table
—page table contains 1024 32bit entries
—each entry points to page frame

Linear address

Bits 10 10 12
DIR PAGE OFF
mapping
linear |
Gddl"ess to Page directory Page table Page frame
physical [R] |
address ‘
with paging
5 LE Word selected
A
DIR | OFF
i ‘;,15' J *

(b) _

P4

* Many OSs:
—BASE=0
—LIMIT=MAX

* =» no segmentation at all

B
L THE UNIVERSITY OF

}::; NEW SOUTH WALES

That is it!

B
¢! THE UNIVERSITY OF
@il NEW SOUTH WALES

