&cse

Extended OS

HE UNIVERSIY OF

I
-@ NOW SOUTIT WALTS

i

Virtual Machines

References:

Smith, J.E.; Ravi Nair; , "The architecture of virtual machines,"
Computer , vol.38, no.5, pp. 32- 38, May 2005

Chapter 7 — 7.3 Textbook “Modern Operating Systems”, 4t ed.

All of chapter 7, if you're interested.

THE UNIVERSY OF
NOW SOUTI WALTS

E

3/16/2016

Learning Outcomes

» An appreciation that the abstract interface to
the system can be at different levels.
— Virtual machine monitors (VMMs) provide a low-
level interface
» An understanding of trap and emulate
« Knowledge of the difference between type 1
(native) and type 2 VMMs (hosted)

THE UNIVERSITY OF
NOW SOUTIT WALTS

fcse

E

Interface Levels

Application

rograms
S Software

Libraries
AP|

Operating system ABI

0 —O— ISA

Execution hardware

Memory

8 ms[aton Hardware

1/0 devices

and
networking

THE UNIVERSITY OF
NOW SOUTIT WALTS

ki

Observations
» Operating systems provide well defined
interfaces
— Abstract hardware details
+ Simplify
- Enable portability across hardware differences
» Hardware instruction set architectures
are another will defined interface
— Example AMD and Intel both implement
(mostly) the same ISA
— Software can run on both

THE UNIVERSY OF
NOW SOUTI WALTS

E

Instruction Set Architecture

« Interface between - n
Libraries
software and i
hardware jises L fm
— label 3 + 4 BT

Memory
e Hardware

+ Divided between
privileged and un-
privileged parts
— Privileged a superset

of the un-privileged

/0 devices

netwiorking

THE UNIVERSITY OF
NOW SOUTIT WALTS

#cse
Application Binary
Interface
« Interface between ot o
programs « e "
hardware + OS -
— Label 2+4

THE LNIVERSI
NOW SOUTIT WALTS

Memory
e Hardware

+ Consists of system
call interface + un-

privileged ISA

/0 devices

networking

Y Or

i

Some Interface Goals

+ Support deploying software across all
computing platforms.

— E.g. software distribution across the
Internet

+ Provide a platform to securely share
hardware resources.
— E.g. cloud computing

THE UNIVERSY OF
NOW SOUTI WALTS

Application Programming
Interface
Interface between high-level .
language < libraries + @ e e
hardware + OS ::
« Consists of library calls + un- > ném .,__/;
privileged |SA Execution hardware

THE UNIVERSITY OF
NOW SOUTIT WALTS

3/16/2016

— Syscalls usually called
through library.
Portable via re-compilation
to other systems supporting
API

— or dynamic linking

Memory
e Hardware

/0 devices

netwiorking

fcse

E

Abstraction versus Virtualisation

Abstragtiony |\ /" Virtualization __A ,

’
File
/!
i
’
/)

~ v]
\

7 v T
N ’
T « File
\ \ o
\\ \ ’
\
N /

(a) (b) u

THE UNIVERSITY OF
NOW SOUTIT WALTS

THE UNIVERSY OF
NOW SOUTI WALTS

OS is an extended virtual
machine

Multiplexes the “machine” between
applications

— Time sharing, multitasking, batching
Provided a higher-level machine for
— Ease of use

— Portability

— Efficiency

— Security

— Etc....

|HE UNIVERSITY OF (b)
NEW SOUTIT WALES

Processversus System
Virtual Machine

Guest Application process

Application process
CETITETNN NANNNANNNAN]
Runtime < |Virtualizing software,
Process

08 ’ virtual

Host - machine
Hardware
(a)

Applications Applications

Guest

\Virtualizing software;

= System
virtual
Host Hardware machine

&cse
JAVA - Higher-level Virtual
Machine
« write a program once, and run it
anywhere
— Architecture independent Java Code (.java)
— Operating System independent l
« Language itself was clean, JAVAC

robust, garbage collection
* Program compiled into bytecode
— Interpreted or just-in-time
compiled.
— Lower than native performance

compiler
Byte Code (.class)

|
' ' '

VM VM WM
4 ! '

- Cse
Aside: Just In-Time
compilation (JI v (D

3/16/2016

fcse

Comparing Conventional code
execution versus
Emulation/Translation

HLL program HLL program
Compiler front end Compiler
Intermediate code Portable code
Compiler back end Al Distribution
Object code Virtual memory image
Distribution

Loader VM interpreter/compiler

Memory image Host instructions
® (..,

THE UNIVERSITY OF
NOW SOUTIT WALTS

£ CSe

JAVA and the Interface
Goals
+ Support deploying software across all
computing platforms.

* Provide a platform to securely share
hardware resources. ¥

THE UNIVERSY OF
NOW SOUTI WALTS

fcse

Issues

Legacy applications
No isolation nor resource management
between applets
 Security
— Trust JVM implementation? Trust
underlying OS?
» Performance compared to native?

THE UNIVERSITY OF
NOW SOUTIT WALTS

THE UNIVERSY OF
NOW SOUTI WALTS

Is the OS the “right” level of
extended machine?

Security

— Trust the underlying OS?

Legacy application and OSs

* Resource management of existing
systems suitable for all applications?
— Performance isolation?

What about activities requiring “root”
privileges

THE UNIVERSITY OF
NOW SOUTIT WALTS

&cse

Virtual Machine Monitors

Also termed a hypervisor

* Provide scheduling and resource
management

« Extended “machine” is the actual
machine interface.

THE UNIVERSITY OF
NOW SOUTIT WALTS

Advantages

» Legacy OSes (and + Testand Development

applications) « Security

» Legacy hardware — VMM (hopefully) small

« Server consolidation and correct
— Cost saving + Performance near bare
— Power saving hardware

- Server migration — For some applications

» Concurrent OSes
— Linux — Windows

— Primary — Backup

+ High availability

THE UNIVERSY OF
NOW SOUTI WALTS

3/16/2016

IBM VM/370

« CMS a light-weight, single-user OS

* VM/370 multiplex multiple copies of
CMS

Virtual 370s
1~ System calls here]
/O instructions here i i | CMSs CMs CMS *4— Trap here
Trap here —->* VM/370
370 Bare hardware

THE UNIVERSITY OF
NOW SOUTIT WALTS

Native (Type 1) vs. Hosted
(Type 2) Hypervisor
VM1 VM2

VM1 VM2

:IHypeWisor o -

Host Operating System

Physical Machine

Physical Machine

fcse

Type 1 (Native) Hypervisor

Hypervisor (VMM) runs in most VM1
privileged mode of processor
— Manage hardware directly
— Also termed classic..., bare-
metal..., native...
Guest OS runs in non-privileged
mode
— Hypervisor implements a virtual
kernel-mode/virtual user-mode
— Hardware provides three privilege
levels (e.g. Intel VT-x)
What happens when guest OS
executes native privileged
instructions?

THE LNIVERSITY OF
NOW SOUTIT WALTS

VM2

Hypervisor

Physical Machine

THE UNIVERSY OF
NOW SOUTI WALTS

cse

Type 2 (Hosted) Hypervisor
" provess above e prvisged VM1 | VM2

host OS

— Also termed hosted hypervisor
« Again, provides a virtual kernel-
mode and virtual user-mode

« Can leverage device support of
existing host OS.

Hypervisor App -
* What happens when guest OS = %_

execute privileged instructions? Host Operating System

Physical Machine

THE UNIVERSITY OF
NOW SOUTIT WALTS

3/16/2016

Gerald J. Popek and Robert P. Goldberg (1974). "Formal

H osted Hype rV| so r D etai | s Requirements for Virtualizable Third Generation

Architectures”. Communications of the ACM 17 (7): 412 -421.

Jeremy Sugerman, Ganesh

+ Sensitive Instructions
Venkitachalam and Beng-Hong Lim,

Py i . — Theinstructions that attempt to change the configuration of the processor.
Virtualizing /O Devices on VMware

Worksmogn's Hosted Virtual Machine HOSI World VM World — The instructions whose behaviour or result depends on the configuration of the
Monitor”, USENIX ATC 2001 processor.

Hypervisor i "
Hypervisor application installs driver (part Agg " « Privileged Instructions
of the hypervisor) into the Host OS — Instructions that trap if the processor is in user mode and do not trap if it is in system
Driver intercepts hypervisor related mode.

activities from Hyp. App. « Theorem

:t: :ﬁ:d switches” when guest OS needs CuesiE — Architecture is virtualisable if sensitive i ions are a subset of privil

~ Unloads Host OS state from processor instructions.
~ Loads hypervisor state and gives it control of Host OS
machine

Hypervisor “world switches” when Host) i
0OS is needed Physical Machine
~ Regularly toallow interactivity with Host OS,
~ When hypervisor needs Host OS service (e.g. file
system)

THE UNIVERSITY OF THE UNIVERSITY OF
NOW SOUTIT WALTS NOW SOUTIT WALTS

Hypervisor

Approach: Trap & Emulate? Example: mtcO/mfc0 MIPS
Lt

w8 » mfc0: load a value in the system coprocessor
— Can be used to observer processor configuration
ST » mtcO: store a value in the system coprocessor
— Can be used to change processor configuration
» Example: disable interrupts
- r (5 7-

& 7 f/)é = mfce rl, CO_Status

andi r1, rl, CST_IEc

("7 M ‘Z ﬁﬁJU c,ﬁ/ﬁ// - mtco rl, CO_Status

» Sensitive?
* Privileged?

THE UNIVERSY OF THE UNIVERSY OF
NOW SOUTI WALTS NOW SOUTI WALTS

Example: cli/sti x86 X86 POPF

. CLI Clear interrupt ﬂag 3130290282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
: — : -
— Disable interrupts ouuo:ooo%aoo&il’é;?u’;‘ 0 12101 HFIE(2[o|20| p]1fE
. | L
» STI: set interrupt flags
— Enable interrupts Pop top of stack and store in EFLAGS
+ Sensitive? register
* Privileged? — IF bit disables interrupts

THE UNIVERSITY OF THE UNIVERSITY OF
NOW SOUTIT WALTS NOW SOUTIT WALTS

&cse

E

X86 POPF

* |Is not privileged (does not trap)
— In kernel mode — enable/disables interrupts
—In user-mode — silently ignored

« POPF is not virtualisable

+ X86 (pre VT extensions) is not
virtualisable

THE UNIVERSITY OF
NOW SOUTIT WALTS

i

What is System/161?

THE UNIVERSY OF
NOW SOUTI WALTS

E

Taxonomy of Virtual
Machines

Process VMs

System VMs

Same Same Different
ISA ISA
Multiprogrammed Dynamic Classic system Whole-system
systems translators VMs
I
Same-ISA dynamic High-level-language Hosted Codesigned
binary optimizers VMs | VMs VMs

THE UNIVERSITY OF
NOW SOUTIT WALTS

3/16/2016

