&cse

THE UNIVERSITY OF
NOW SOUTIT WALTS

Scheduler Activations

Including some slides modified from Raymond Namyst, U. Bordeaux

Learning Outcomes

» An understanding of hybrid approaches
to thread implementation

* A high-level understanding of scheduler
activations, and how they overcome the
limitations of user-level and kernel-level
threads.

« Thomas Anderson, Brian Bershad, Edward
Lazowska, and Henry Levy. Scheduler Activations:
Effective Kernel Support for the User-Level
management of Parallelism. ACM Trans. on
Computer Systems 10(1), February 1992, pp. 53-79.

THE UNIVERSY OF
NOW SOUTI WALTS

fcse

@

User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

% Blocking blocks all threads in a process
— Syscalls
— Page faults

% No thread-level parallelism on multiprocessor

THE UNIVERSITY OF
NOW SOUTIT WALTS

THE UNIVERSITY OF
NOW SOUTIT WALTS

4/6/2016

cse
User-level Threads
User Mode
[Scheduler] (Sheguier)
Scheduler
Kernel Mode
cse
Kernel-Level Threads

User Mode
Kernel Mode

THE CXIVERSITY OF
NOW SOUTIT WALTS

&cse

E

Kernel-level Threads

% Slow thread management (creation, deletion,
switching, synchronisation...)
» System calls

v Blocking blocks only the appropriate thread in
a process

v Thread-level parallelism on multiprocessor

THE UNIVERSITY OF
NOW SOUTIT WALTS

E

Performance

Table I: Thread Operation Latencies (usec.)

Topaz TUltrix
Operation FastThreads threads processes
Null Fork 34 048 11300
Signal-Wait 37 441 1840

THE UNIVERSITY OF
NOW SOUTIT WALTS

4/6/2016

E

CSe
Hybrid Multithreading
User Mode
(Scheduler] (Scheduler)
Scheduler
Kernel Mode
N STHTWATS
fcse

Scheduler Activations

« First proposed by [Anderson et al. 91]

 |dea: Both schedulers co-operate
« User scheduler uses system calls
+ Kernel scheduler uses upcalls!
» Two important concepts
— Upcalls
- Notify the user-level of kernel scheduling events
— Activations
= A new structure to support upcalls and execution
— approximately a kernel thread
+ As many running activations as (allocated) processors
- Kernel controls activation creation and destruction

THE UNIVERSITY OF
NOW SOUTIT WALTS

ki

Hybrid Multithreading

v'Can get real thread parallelism on
multiprocessor

x Blocking still a problem!!!

THE UNIVERSY OF
NOW SOUTI WALTS

E

THE UNIVERSITY OF
NOW SOUTIT WALTS

Y
[Sk

—

THE UNIVERSITY OF
NOW SOUTIT WALTS

cse
Scheduler Activations
« Instead of CPU time wasted

User Space _sv_srcall —————————— —

&I/O requegt_ interrupt ’
Hardware ‘8 !

 ...rather use the following scheme:
CPU used

User Space - 7

\. f
[upcall upcall
\ f/

¥81

Kernel Space

Kernel Space

Hardware

THE UNIVERSY OF
NOW SOUTI WALTS

THE UNIVERSITY OF
NOW SOUTIT WALTS

4/6/2016

Working principle

« Blocking syscall scenario on 2 processors

Process

$ 355

THE UNIVERSITY OF
NOW SOUTIT WALTS

ki

Upcalls to User-level
scheduler

« New (processor #)
— Allocated a new virtual CPU
— Can schedule a user-level thread
» Preempted (activation # and its machine state)
— Deallocated a virtual CPU
— Can schedule one less thread
» Blocked (activation #)
— Notifies thread has blocked
— Can schedule another user-level thread
« Unblocked (activation # and its machine state)
— Notifies a thread has become runnable
— Must decided to continue current or unblocked thread

THE UNIVERSY OF
NOW SOUTI WALTS

E

Working principle

+ Blocking syscall scenario on 2 processors

Process

$ 55

THE UNIVERSITY OF
NOW SOUTIT WALTS

&cse

Working principle

+ Blocking syscall scenario on 2 processors

Process

S S

THE UNIVERSITY OF
NOW SOUTIT WALTS

fcse

Working principle

+ Blocking syscall scenario on 2 processors

Process

S S

£ CSe

Working principle
» Blocking syscall scenario on 2 processors

Process

S S

Preempt

THE UNIVERSY OF
NOW SOUTI WALTS

THE UNIVERSITY OF
NOW SOUTIT WALTS

4/6/2016

£ CSe

Working principle
» Blocking syscall scenario on 2 processors

Process

S S

fcse

Working principle

« Blocking syscall scenario on 2 processors

Blocking syscall

THE UNIVERSITY OF
NOW SOUTIT WALTS

THE UNIVERSY OF
NOW SOUTI WALTS

fcse

Working principle
» Blocking syscall scenario on 2 processors

Process

THE UNIVERSITY OF
NOW SOUTIT WALTS

4/6/2016

Working principle Working principle

» Blocking syscall scenario on 2 processors + Blocking syscall scenario on 2 processors

Process

1/O completion

THE UNIVERSITY OF THE UNIVERSITY OF
NOW SOUTIT WALTS NOW SOUTIT WALTS

Working principle

+ Blocking syscall scenario on 2 processors

Scheduler Activations

Process » Thread management at user-level
— Fast
é » Real thread parallelism via activations

— Number of activations (virtual CPUs) can equal
CPUs

* Blocking (syscall or page fault) creates new
activation

— User-level scheduler can pick new runnable
thread.

* Fewer stacks in kernel
— Blocked activations + number of virtual CPUs

THE UNIVERSY OF THE UNIVERSY OF
NOW SOUTI WALTS NOW SOUTI WALTS

Performance
Performance (compute-bound)

-0~ Topaz threads
—* orig FastThrds
¥ new FastThrds

Table IV. Thread Operation Latencies (usec.)

FastThreads on FastThreads on
Operation Topaz Threads Scheduler Activations Topaz threads Ultrix processes % 3
°
Null Fork 34 37 048 11300 9 R
Qo
Signal-Wait 37 42 441 1840 @

1 2 3 4 5 6

number of processors

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.

THE UNIVERSITY OF THE UNIVERSITY OF
NOW SOUTIT WALTS NOW SOUTIT WALTS

execution time (sec.)

Fig. 3. Execution
EYOCGSSDI‘S.

Performance
(1/0 Bound)

1007

& Topaz threads
80 1 —* orig FastThrds
¥ new FastThrds

100% 90% 80%

-
70% 60% 50% 40%

% available memory

time of N-Body application versus amount of available memory, 6

Time - Time
fim _User Program User Program i
g @
(3)(4))|
User-Level fn fﬂ’_« l 5{2) 53)‘-—\1
Runtime A 4 4 : 4
Sysem |y 4 & &
B ® |
Operaiing | | ® () i
System Add Add A's thread
Processor | Processor has blocked
e @ @ o0
Time User Program Time
User-Level TN @)
Runtime f“ jﬂ] 4
System i
. =] =]
. [(a) [®B) J©) [by (=} (D}
O{eli{lng A's thread
System and B's
Kemel thread can
continue
— @@)
Fig. . Example: I/0 request /completion.
-@ THE LAIVERSILY OF
N SOUTITWALES

E

Adoption

» Adopters
— BSD “Kernel Scheduled Entities”
- Reverted back to kernel threads
— Variants in Research OSs: K42, Barrelfish
— Digital UNIX
— Solaris
— Mach
— Windows 7 64-bit User Mode Scheduling

* Linux, MacOS(?) -> kernel threads

THE UNIVERSITY OF
NOW SOUTIT WALTS

4/6/2016

