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Learning Outcomes

* An understanding of hybrid approaches
to thread implementation

* A high-level understanding of scheduler
activations, and how they overcome the
limitations of user-level and kernel-level
threads.




 Thomas Anderson, Brian Bershad, Edward
Lazowska, and Henry Levy. Scheduler Activations:
Effective Kernel Support for the User-Level
management of Parallelism. ACM Trans. on
Computer Systems 10(1), February 1992, pp. 53-79.

B
CE ] THE UNIVERSITY OF
8| NEW SOUTH WALES




User-level Threads
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User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

x Blocking blocks all threads in a process
— Syscalls
— Page faults

x No thread-level parallelism on multiprocessor
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Kernel-Level Threads
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Kernel-level Threads

x Slow thread management (creation, deletion,
switching, synchronisation...)

« System calls

v Blocking blocks only the appropriate thread in
a process

v Thread-level parallelism on multiprocessor
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Performance

Table I. Thread Operation Latencies (usec.)

Topaz Ultrix
Operation FastThreads threads processes
Null Fork 34 048 11300

441 1840

Signal-Wait
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Hybrid Multithreading
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Hybrid Multithreading

v"Can get real thread parallelism on
multiprocessor

% Blocking still a problem!!!




Scheduler Activations

- First proposed by [Anderson et al. 91]

 |dea: Both schedulers co-operate
« User scheduler uses system calls
« Kernel scheduler uses upcalls!

- Two important concepts

— Upcalls
- Notify the user-level of kernel scheduling events
— Activations
A new structure to support upcalls and execution
— approximately a kernel thread
- As many running activations as (allocated) processors
 Kernel controls activation creation and destruction
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Scheduler Activations
 |nstead of CPU time wasted

I _
User Space S

Kernel Space

Hardware 8

- ...rather use the following scheme:
CPU used

User Space

Hardware
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Upcalls to User-level
scheduler

(processor #)
— Allocated a new virtual CPU
— (Can schedule a user-level thread

. (activation # and its machine state)
— Deallocated a virtual CPU
— (Can schedule one less thread
. (activation #)
— Notifies thread has blocked
— (Can schedule another user-level thread
. (activation # and its machine state)

— Notifies a thread has become runnable
— Must decided to continue current or unblocked thread
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Working principle

« Blocking syscall scenario on 2 processors

Process
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Working principle

* Blocking syscall scenario on 2 processors

Process
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Working principle
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Working principle

« Blocking syscall scenario on 2 processors

Blocking syscall
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Working principle

* Blocking syscall scenario on 2 processors
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Working principle

* Blocking syscall scenario on 2 processors
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Working principle
» Blocking syscall scenario on 2 processors

Process

%

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES




Scheduler Activations

Thread management at user-level
— Fast

Real thread parallelism via activations

— Number of activations (virtual CPUs) can equal
CPUs

Blocking (syscall or page fault) creates new
activation

— User-level scheduler can pick new runnable
thread.

Fewer stacks in kernel
— Blocked activations + number of virtual CPUs
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Performance

Table IV. Thread Operation Latencies (psec.)

FastThreads on FastThreads on
Operation Topaz Threads Scheduler Activations Topazthreads  Ulirix processes

Null Fork 34 37 048 11300
Signal-Wait 37 42 441 1840
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Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.
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Performance
(1/0 Bound)
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Fig. 3. Execution time of N-Body application versus amount of available memory, 6
processors.,




Adoption

« Adopters
— BSD “Kernel Scheduled Entities”

* Reverted back to kernel threads
— Variants in Research OSs: K42, Barrelfish
— Digital UNIX
— Solaris
— Mach
— Windows 7 64-bit User Mode Scheduling

* Linux -> kernel threads

B
CE ] THE UNIVERSITY OF
8| NEW SOUTH WALES




Time
T1

User-Level
Runtime
Aysiem

User Program

,,,,,,,,,,,,,,,,,,

4
f,ﬁ” )

13 f_&j
-

Operating
System
Kemel

Processors

=

Time
T3

User-Lewvel
Runtime
System

User Program
Y

i

samEE

Time
T2

Time

(A) (B) A ®  [©
Add Add A's thread
Processor | Processor has blocked
® o @
}
Usc:r ngmm LTser ngram

{24

£ 65

L] L]
u

|;1

Operating
Sy stem
Kemnel

Processors

THE UNIVERSITY OF
NEW SOUTH WALES

(D)

A's thread
and B's
thread can
continue

()

T4

Fig. 1.

Example: [/0 request /completion.



