Scheduler Activations

THE UNIVERSITY OF Including some slides modified from Raymond Namyst, U. Bordeaux
NEW SOUTH WALES

Learning Outcomes

* An understanding of hybrid approaches
to thread implementation

* A high-level understanding of scheduler
activations, and how they overcome the
limitations of user-level and kernel-level
threads.

 Thomas Anderson, Brian Bershad, Edward
Lazowska, and Henry Levy. Scheduler Activations:
Effective Kernel Support for the User-Level
management of Parallelism. ACM Trans. on
Computer Systems 10(1), February 1992, pp. 53-79.

B
CE] THE UNIVERSITY OF
8| NEW SOUTH WALES

User-level Threads

User Mode
I\’) / \ ! ’
| Scheduler | | Scheduler | [Scheduler |
\ Process \ Process B / rocess C /
[Scheduler J
Kernel Mode

LT THE UNIVERSITY OF
NEW SOUTH WALES

User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

x Blocking blocks all threads in a process
— Syscalls
— Page faults

x No thread-level parallelism on multiprocessor

-- THE UNIVERSITY OF
NEW SOUTH WALES

Kernel-Level Threads

User Mode

T REEET}

\ Procesg B /

} Schiduler |

\ Proc

Kernel Mode

=
el THE UNIVERSITY OF
el NEW SOUTH WALES

(&)
R

Kernel-level Threads

x Slow thread management (creation, deletion,
switching, synchronisation...)

« System calls

v Blocking blocks only the appropriate thread in
a process

v Thread-level parallelism on multiprocessor

- THE UNIVERSITY OF
NEW SOUTH WALES

Performance

Table I. Thread Operation Latencies (usec.)

Topaz Ultrix
Operation FastThreads threads processes
Null Fork 34 048 11300

441 1840

Signal-Wait

B!
L THE UNIVERSITY OF
@8 NCW SOUTH WALES

Hybrid Multithreading

User Mode

w

Seer

i

\ Proces ‘\

Kernel Mode

-

\ Proces

[Schefluler |

|

I

s B /

A 4

[Sche"duler J

.
Do -
/
.

=
el THE UNIVERSITY OF
el NEW SOUTH WALES

(&)
R

Hybrid Multithreading

v"Can get real thread parallelism on
multiprocessor

% Blocking still a problem!!!

Scheduler Activations

- First proposed by [Anderson et al. 91]

 |dea: Both schedulers co-operate
« User scheduler uses system calls
« Kernel scheduler uses upcalls!

- Two important concepts

— Upcalls
- Notify the user-level of kernel scheduling events
— Activations
A new structure to support upcalls and execution
— approximately a kernel thread
- As many running activations as (allocated) processors
 Kernel controls activation creation and destruction

=5
g THE UNIVERSITY OF
NEW SOUTH WALES

——

THE UNIVERSITY OF
NEW SOUTH WALES

Pzl

THE UNIVERSITY OF
NEW SOUTH WALES

Pzl

Scheduler Activations
 |nstead of CPU time wasted

I _
User Space S

Kernel Space

Hardware 8

- ...rather use the following scheme:
CPU used

User Space

Hardware

B
CE] THE UNIVERSITY OF
8| NEW SOUTH WALES

Upcalls to User-level
scheduler

(processor #)
— Allocated a new virtual CPU
— (Can schedule a user-level thread

. (activation # and its machine state)
— Deallocated a virtual CPU
— (Can schedule one less thread
. (activation #)
— Notifies thread has blocked
— (Can schedule another user-level thread
. (activation # and its machine state)

— Notifies a thread has become runnable
— Must decided to continue current or unblocked thread

e —
Working principle

« Blocking syscall scenario on 2 processors

Process

$15 88

=
CEL] THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle

* Blocking syscall scenario on 2 processors

Process

=
CEL] THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle
« Blocking syscall scenario on 2 processors

Process

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle
« Blocking syscall scenario on 2 processors

Process

¢

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle
« Blocking syscall scenario on 2 processors

Process

¢

Preempt

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle
« Blocking syscall scenario on 2 processors

Process

¢

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle

« Blocking syscall scenario on 2 processors

Blocking syscall

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle

* Blocking syscall scenario on 2 processors

Process

o

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle

* Blocking syscall scenario on 2 processors

I/0O completion

=
CEL] THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle

* Blocking syscall scenario on 2 processors

Process

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Working principle
» Blocking syscall scenario on 2 processors

Process

%

==
BL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

Scheduler Activations

Thread management at user-level
— Fast

Real thread parallelism via activations

— Number of activations (virtual CPUs) can equal
CPUs

Blocking (syscall or page fault) creates new
activation

— User-level scheduler can pick new runnable
thread.

Fewer stacks in kernel
— Blocked activations + number of virtual CPUs

SET THE UNIVERSITY OF

NEW SOUTH WALES

Performance

Table IV. Thread Operation Latencies (psec.)

FastThreads on FastThreads on
Operation Topaz Threads Scheduler Activations Topazthreads Ulirix processes

Null Fork 34 37 048 11300
Signal-Wait 37 42 441 1840

Performance
(compute-bound)

=0~ Topaz threads
& orig FastThrds
“¥ new FastThrds

b

speedup

1 2 3 4 5 ©

number of processors

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.

-- THE UNIVERSITY OF
meesil NEW SOUTH WALES

[,
R

Performance
(1/0 Bound)

1007
- . = Topaz threads
5 80 7 —4& orig FastThrds
- ¥ new FastThrds
a) -
© 60
-]
)
- 40
0
.,,_I -
= _
520
L -
o
¢ D I v 1 L | T T ¥ 1 T T T 1

100% 90% 80% 70% 60% 50% 40%

% avallable memory

Fig. 3. Execution time of N-Body application versus amount of available memory, 6
processors.,

Adoption

« Adopters
— BSD “Kernel Scheduled Entities”

* Reverted back to kernel threads
— Variants in Research OSs: K42, Barrelfish
— Digital UNIX
— Solaris
— Mach
— Windows 7 64-bit User Mode Scheduling

* Linux -> kernel threads

B
CE] THE UNIVERSITY OF
8| NEW SOUTH WALES

Time
T1

User-Level
Runtime
Aysiem

User Program

,,,,,,,,,,,,,,,,,,

4
f,ﬁ”)

13 f_&j
-

Operating
System
Kemel

Processors

=

Time
T3

User-Lewvel
Runtime
System

User Program
Y

i

samEE

Time
T2

Time

(A) (B) A ® [©
Add Add A's thread
Processor | Processor has blocked
® o @
}
Usc:r ngmm LTser ngram

{24

£ 65

L] L]
u

|;1

Operating
Sy stem
Kemnel

Processors

THE UNIVERSITY OF
NEW SOUTH WALES

(D)

A's thread
and B's
thread can
continue

()

T4

Fig. 1.

Example: [/0 request /completion.

