Virtual Memory

THE UNIVERSITY OF 1
NEW SOUTH WALES
L

Learning Outcomes

» An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.

THE UNIVERSITY OF 2
NEW SOUTH WALES
L

Memory Management Unit
(or TLB)

The CPU sends virtual

CPU addresses to the MMU
package
CPU
Memory M Disk
management emory controller
unit
\ l l Bus

The MMU sends physical
addresses to the memory

The position and function of the MMU

Virtual Address

Space 15 Paging
i 13
+ Virtual Memory 12 « Physical Memory
— Divided into equal- 11 Divi .
sized pages - |V|ded.|nto
— A mapping is a 10 equal-sized
translation between 9 frames

* Apageandaframe g
« Apage and null
— Mappings defined at
runtime
« They can change
— Address space can
have holes
— Process does not
have to be
contiguous in
physical memory

Physical Address

O = NWHUTO N
O= NDNWhou OV

THE UNIVERSITY OF 3 Space 4
NEW SOUTH WALES
W= W=
. .) Programmer’s perspective:
V|rtuglpgggress K] Typlcal Address V|rtugl£ggress logically present
T System’s perspective: Not
Kernel ’/? Space LayOUt mapped, data on disk
| Stack region is at top, * A process may
Stack] and can grow down be only partially
- + Heap has free space to resident
Shared T/ grow up — Allows OS to
Libraries - - Textis typically read-only store individual
] o pages on disk
BSS ’_ » Kernel is in a reserved, — Saves memory
(heap) % protected, sh.ared region for infrequently
+ 0-th page typically not used data & code
Data T\ used, why? « What happens if
Text we access non-
ex .
r/ resident Physical Address
® S : memory? Space
L

Loz

Physical
Address Spage [

Proc 1 Address Proc 2 Address
Space | ' 7] Space
Currently : ! 2
running \ : 7
H LA
1
1

Page Faults

» Referencing an invalid page triggers a page fault
« An exception handled by the OS
» Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
« Get an empty frame

] L « Load page from disk
— « Update page (translation) table (enter frame #, set valid bit, etc.)
[« Restart the faulting instruction
Memory M
Access L
LK
J
NSV WA 0] 7 NSV WARS 8
| e | (o] | o] L
Virtual Address o
Space 15 15
14 Page 14
+ Page table for 12 12 * Note: Some implementations store disk
resident part of 11 L }2) block numbers of non-resident pages in
address space 10 — the page table (with valid bit Unset)
8] 8
7 7
6 | 6
5 3] 5
4 | 4
3 1, 3
2]2
1 Physical |7 | 1
R e, 0 Address Spacg | %0 B K
L —_— L

» Private code and data
— Each process has own
copy of code and data

— Code and data can

appear anywhere in
the address space

THE UNIVERSITY OF
NEW SOUTH WALES
L

Shared Pages

» Shared code

— Single copy of code
shared between all
processes executing it

— Code must not be self
modifying

— Code must appear at
same address in all
processes

Proc 1 Address
Space

Proc 2 Address
Space

[<[<[n]

Physical
Address Spage [

Two (or more)
processes
running the

same program
and sharing

the text section

Page

Page
o Table 12

10
1]
na
2
ﬁ t- Table
M=

(IS T T T el T]

Page Table Structure -

» Page table is (logically) an array of 5]
frame numbers -
— Index by page number]

» Each page-table entry (PTE) also has

other bits —
Caching

disabled Modified Present/absent |

% | | ‘ ‘ ‘ Page frame number T

Referenced Protection 7

Page [o]

Table 13

THE UNIVERSITY OF
NEW SOUTH WALES
L

PTE Attributes (bits)
» Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
» Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
 Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
» Caching bit
— Useto jndicate processor should bypass the cache when
accessing memory
« Example: to access device registers or memory

THE UNIVERSITY OF 14
NEW SOUTH WALES
L

Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

THE UNIVERSITY OF 15
NEW SOUTH WALES
e

Virtual Address

oz o |

Reglster

Page Table

Page
Frame

[Frame ¥

LN

Program Paging Mechanism Main Memory

Figure 8.3 Address Translation in a Paging System

virtual memory

virtual and physical mem chopped up in pages/frames

~— 154 Memory address—

o

Virtual Output

s [Pl P =
CLEEREEERE L

-if no: bring in the page from disk '

MSBs in physical address :

+ programs use virtual —
addresses . pNEE
- virtual to physical mapping -
by MMU o HE—
-first check if page present T
(present/absent bit) 1
-if yes: address in page table form H—

i \
L MH)
THE UNIVERSITY OF | o I 1ototser—
NEW SOUTH WALES | I ‘
| oo i)

Page Tables

+ Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?

THE UNIVERSITY OF 18
NEW SOUTH WALES
L

Page Tables

* Assume we have
— 64-bit virtual address (humungous address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
« Main memory?

THE UNIVERSITY OF
NEW SOUTH WALES
L

Page Tables

» Page tables are implemented as data structures in main
memory

» Most processes do not use the full 4GB address space
- eg. 0.1 —1MBtext, 0.1 — 10 MB data, 0.1 MB stack

* We need a compact representation that does not waste
space
— But is still very fast to search

« Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

THE UNIVERSITY OF 20
NEW SOUTH WALES
L

[ZERER

[ZERRRR

page tables
Two-level Page
Table i
» 2d_|evel :
page tables ot
representing 1023 u
unmapped .]
ts 10 10 1,
gﬁg:astgée not - PT1| PT2 On:e' z E
(@) 2 3
— Null in the ! E
top-level
page table -
. g
: E
p E
3 E
2 E
1 -
0 E

[ZERRRR!

THE UNIVERSITY OF
NEW SOUTH WALES
—

L~ | p.

table for
the top
aM of
memor

To
pages

Two-level Translation

Virtual Address

10 bits

Frame # Offset

ot e
table pir

Program Paging Mechanism

LN

;

Main Memory

Page
ram

Example Translations

THE UNIVERSITY OF
NEW SOUTH WALES
L

23

Alternative: Inverted Page Table

PID VPN offset
L T]
—
) Index[PID| VPN [ctrl] next
R‘ Hash Anchor Table 0
(HAT) 1
/ 3
T 4
N 5 -
6

THE UNIVERSITY OF
NEW SOUTH WALES
L

IPT: entry for each physical frame

Alternative: Inverted Page Table

PID VPN offset

o[0% [0ni23]
——
ﬁ Index[PID] VPN [ctrl] next
Hash Anchor Table 0
(HAT) 1
G@ o1 | OxiA 0x40C
]

0x40C[0 | _0%5 0x0

-
{ > 0x40D

\ ppn offset
0x40C

THE UNIVERSITY OF
NEW SOUTH WALES
L

Inverted Page Table (IPT)

» “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

 Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault

THE UNIVERSITY OF 26
NEW SOUTH WALES
L

Properties of IPTs

« IPT grows with size of RAM, NOT virtual address space

» Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

+ Saves a vast amount of space (especially on 64-bit
systems)
» Used in some IBM and HP workstations

THE UNIVERSITY OF 27
NEW SOUTH WALES
e

Given n processes

* how many page tables will the system
have for
—‘normal’ page tables
—inverted page tables?

THE UNIVERSITY OF
NEW SOUTH WALES
—

Another look at sharing...

THE UNIVERSITY OF
NEW SOUTH WALES
L

Proc 1 Address

Two (or more)
processes
running the

same program
and sharing

the text section

30

THE UNIVERSITY OF
NEW SOUTH WALES
L

VM Implementation Issue

* Problem:
— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=Intolerable performance impact!!

 Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

|| TLB operation

device!!!

Secondary
Virtual Address Main Memory Memory

Page # | Offset

Translation
Lookaside Buffer

TLB hit

Data
4 structure
PagefTable " "
in main

memory

TLB miss

Real Address

Page fault

THE UNIVERSITY OF 31
NEW SOUTH WALES
L

{0

Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB
« If matching PTE found (TLB hit), the address is
translated
» Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

THE UNIVERSITY OF 33
NEW SOUTH WALES
e

TLB properties

» Page table is (logically) an array of frame
numbers
» TLB holds a (recently used) subset of PT entries
— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W

34

THE UNIVERSITY O
NEW SOUTH WALE
—

TLB properties
» TLB may or may not be under direct OS control
— Hardware-loaded TLB
* On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB
« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB
« Example: MIPS, Itanium (optionally)

» TLB size: typically 64-128 entries

» Can have separate TLBs for instruction fetch
and data access

» TLBs can also be used with inverted page tables
(and others)

THE UNIVERSITY OF
NEW SOUTH WALES

35

Lo

TLB and context switching

» TLB is a shared piece of hardware
» Normal page tables are per-process (address space)

» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate all

entries)
« high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB
« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits

THE UNIVERSITY OF 36
NEW SOUTH WALES
L

TLB effect

Virtual Address Spaces
(3 processes)

Recap - Simplified Components of
VM System

age Tables for 3
processes

° WIthOUt TLB o / Frame Table
— Average number of physical memory | “
references per virtual reference (]
=2 CPU
« With TLB (assume 99% hit ratio) 2| 3 e
— Average number of physical memory Eenis Fasl
references per virtual reference
=.99*1+0.01*2
=1.01 — =
Physical Memory
m THE UNIVERSITY OF 37 m THE UNIVERSITY OF 38
NEW SOUTH WALES NEW SOUTH WALES
S S
Recap - Simplified Components of MIPS R3000 TLB
Virtual Address Spaces VM SyStem 1 12 il 6 5 0
(8 processes) Inverted Page
1 7 Table [ven [0 E |
@V&K\\\e@ / EntryHi Register (TLB key fields)
AP
NE
CPU / — 71 P2 L I 1 R T T 0
TLB PFN N D v |c o
2| |8
Entrylo Register (TLB data fields)
Frame Pool » N = Not cacheable + V=valid bit
+ D =Dirty = Write protect ~ * 64 TLB entries
. « Accessed via software through
* G = Global (ignore ASID Cooprocessor 0 registers
L = in lookup) - EntryHi and EntryLo
Physical Memory
m THE UNIVERSITY OF 39 m THE UNIVERSITY OF 40
NEW SOUTH WALES NEW SOUTH WALES
L L
OxEELEELEE OXFFFFFFFF
R3000 Address _— R3000 Address -
Space Layout ecoooooos Space Layout 0000000
+ ksegO: + kuseg:
— 512 megabytes 0%A0000000 — 2 gigabytes 0xA000000
- ngyes?Cgla;Séi:igﬁ‘yWi”dow to S — TLB translated (mapped)
+ 0x80000000 - Ox9fffff virtual = 0x8000004% kseg0 — Cacheable (depending on ‘N’ bit) kseg0
0x00000000 - O it physical = — user-mode and kernel mode 0x80000000
« TLB not used accessible
— Cacheable — Page size is 4K
— Only kernel-mode accessible
— Usually where the kernel code is
placed
kuseg kuseg
m THE UNIVERSITY OF Physical Memory m THE UNIVERSITY OF
| 2 NEW SOUTH WALES . 0x00000000 | 2 NEW SOUTH WALES OXOOOOOOOO

R3000 Address
Space Layout

— Switching processes
switches the translation
(page table) for kuseg

Proc 1 Proc 2
kuseg kuseg

OXFFFFFFFF

0xC000000!

0xA000000

0x80000000

0x00000000

Proc 3
kuseg

R3000 Address
Space Layout

+ ksegt:

— 512 megabytes
— Fixed translation window to
physical memory
« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical
« TLB not used
NOT cacheable
Only kernel-mode accessible
— Where devices are accessed (and
boot ROM)

R3000 Address
Space Layout

» kseg2:
— 1024 megabytes
— TLB translated (mapped)
— Cacheable
« Depending on the ‘N’-bit
— Only kernel-mode accessible
— Can be used to store the virtual
linear array page table

THE UNIVERSITY OF
NEW SOUTH WALES
e

OxfEEEEEEE

0xC0000000

0xA0000000

0x80000000

0x00000000

kuseg

THE UNIVERSITY OF
NEW SOUTH WALES

Physical Memory

[P333333333

0xC0000000

0x80000000

0x00000000

