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Learning Outcomes

» An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.
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Page Faults

» Referencing an invalid page triggers a page fault
« An exception handled by the OS
» Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
« Get an empty frame

] L « Load page from disk
— « Update page (translation) table (enter frame #, set valid bit, etc.)
[ « Restart the faulting instruction
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» Private code and data
— Each process has own
copy of code and data

— Code and data can

appear anywhere in
the address space

THE UNIVERSITY OF
NEW SOUTH WALES
L

Shared Pages

» Shared code

— Single copy of code
shared between all
processes executing it

— Code must not be self
modifying

— Code must appear at
same address in all
processes
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Page Table Structure -

» Page table is (logically) an array of 5]
frame numbers -
— Index by page number ]

» Each page-table entry (PTE) also has

other bits —
Caching
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% | | ‘ ‘ ‘ Page frame number T

Referenced Protection 7
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PTE Attributes (bits)
» Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
» Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
 Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
» Caching bit
— Useto jndicate processor should bypass the cache when
accessing memory
« Example: to access device registers or memory
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Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number
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Page Tables

+ Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
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Page Tables

* Assume we have
— 64-bit virtual address (humungous address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
« Main memory?
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Page Tables

» Page tables are implemented as data structures in main
memory

» Most processes do not use the full 4GB address space
- eg. 0.1 —1MBtext, 0.1 — 10 MB data, 0.1 MB stack

* We need a compact representation that does not waste
space
— But is still very fast to search

« Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)
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Alternative: Inverted Page Table
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IPT: entry for each physical frame




Alternative: Inverted Page Table

PID VPN offset
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Inverted Page Table (IPT)

» “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

 Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault
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Properties of IPTs

« IPT grows with size of RAM, NOT virtual address space

» Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

+ Saves a vast amount of space (especially on 64-bit
systems)
» Used in some IBM and HP workstations
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Given n processes

* how many page tables will the system
have for
—‘normal’ page tables
—inverted page tables?
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Another look at sharing...
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VM Implementation Issue

* Problem:
— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=Intolerable performance impact!!

 Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

|| TLB operation

device!!!

Secondary
Virtual Address Main Memory Memory

Page # | Offset

Translation
Lookaside Buffer

TLB hit

Data
4 structure
PagefTable " "
in main

memory

TLB miss

Real Address

Page fault
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Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB
« If matching PTE found (TLB hit), the address is
translated
» Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception
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TLB properties

» Page table is (logically) an array of frame
numbers
» TLB holds a (recently used) subset of PT entries
— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W
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TLB properties
» TLB may or may not be under direct OS control
— Hardware-loaded TLB
* On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB
« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB
« Example: MIPS, Itanium (optionally)

» TLB size: typically 64-128 entries

» Can have separate TLBs for instruction fetch
and data access

» TLBs can also be used with inverted page tables
(and others)
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TLB and context switching

» TLB is a shared piece of hardware
» Normal page tables are per-process (address space)

» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate all

entries)
« high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB
« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits
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TLB effect

Virtual Address Spaces
(3 processes)

Recap - Simplified Components of
VM System

age Tables for 3
processes

° WIthOUt TLB o / Frame Table
— Average number of physical memory | “
references per virtual reference (]
=2 CPU
« With TLB (assume 99% hit ratio) 2| 3 e
— Average number of physical memory Eenis Fasl
references per virtual reference
=.99*1+0.01*2
=1.01 — =
Physical Memory
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Recap - Simplified Components of MIPS R3000 TLB
Virtual Address Spaces VM SyStem 1 12 il 6 5 0
(8 processes) Inverted Page
1 7 Table [ven [0 E |
@V&K\\\e@ / EntryHi Register (TLB key fields)
AP
NE
CPU / — 71 P2 L I 1 R T T 0
TLB PFN N D v |c o
2| |8
Entrylo Register (TLB data fields)
Frame Pool » N = Not cacheable + V=valid bit
+ D =Dirty = Write protect ~ * 64 TLB entries
. « Accessed via software through
* G = Global (ignore ASID Cooprocessor 0 registers
L = in lookup) - EntryHi and EntryLo
Physical Memory
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OxEELEELEE OXFFFFFFFF
R3000 Address _— R3000 Address -
Space Layout  ecoooooos Space Layout 0000000
+ ksegO: + kuseg:
— 512 megabytes 0%A0000000 — 2 gigabytes 0xA000000
- ngyes?Cgla;Séi:igﬁ‘yWi”dow to S — TLB translated (mapped)
+ 0x80000000 - Ox9fffff virtual = 0x8000004% kseg0 — Cacheable (depending on ‘N’ bit) kseg0
0x00000000 - O it physical = — user-mode and kernel mode 0x80000000
« TLB not used accessible
— Cacheable — Page size is 4K
— Only kernel-mode accessible
— Usually where the kernel code is
placed
kuseg kuseg
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R3000 Address
Space Layout

— Switching processes
switches the translation
(page table) for kuseg

Proc 1 Proc 2
kuseg kuseg

OXFFFFFFFF

0xC000000!

0xA000000

0x80000000

0x00000000

Proc 3
kuseg

R3000 Address
Space Layout

+ ksegt:

— 512 megabytes
— Fixed translation window to
physical memory
« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical
« TLB not used
NOT cacheable
Only kernel-mode accessible
— Where devices are accessed (and
boot ROM)

R3000 Address
Space Layout

» kseg2:
— 1024 megabytes
— TLB translated (mapped)
— Cacheable
« Depending on the ‘N’-bit
— Only kernel-mode accessible
— Can be used to store the virtual
linear array page table

THE UNIVERSITY OF
NEW SOUTH WALES
e

OxfEEEEEEE

0xC0000000

0xA0000000

0x80000000

0x00000000

kuseg

THE UNIVERSITY OF
NEW SOUTH WALES

Physical Memory

[P333333333

0xC0000000

0x80000000

0x00000000




