s

Log Structured File Systems

THE UNIVERSITY OF 1
NEW SOUTH WALLS

LS

Learning Outcomes

» An understanding of the performance of Inode-
based files systems when writing small files.

» An understanding of how a log structured file
system can improve performance, and increase
reliability via improved consistency guarantees
without the need for file system checkers.

» An understanding of “cleaning” and how it might
detract from performance.

THE UNIVERSITY OF 2
NEW SOUTH WALLS

“The Design and Implementation of a
Log-Structured File System”
Mendel Rosenblum and John K. Qusterhout

ACM Transactions on Computer Systems,
Vol 10, No. 1, February 1992, Pages 26-52

THE UNIVERSITY OF 3
NEW SOUTH WALLS

Motivating Observations

* Memory size is growing at a rapid rate

= Growing proportion of file system reads
will be satisfied by file system buffer cache

= Writes will increasingly dominate reads

THE UNIVERSITY OF 4
NEW SOUTIT WALTS
—

Motivating Observations

+ Creation/Modification/Deletion of small files form the majority of a
typical workload
» Workload poorly supported by traditional Inode-based file system
(e.g. BSD FFS, ext2fs)
— Example: create 1k file results in: 2 writes to the file inode, 1 write to
data block, 1 write to directory data block, 1 write to directory inode
= 5 small writes scattered within group
— Synchronous writes (write-through caching) of metadata and
directories make it worse
« Each operation will wait for disk write to complete.
+ Write performance of small files dominated by cost of metadata
writes

Group Data

Super Descrip- | Block]1.10de Inode Data blocks
Block . Bitmap | Table
tors Bitmap
THE UNIVERSITY OF 5

NEW SOUTH WALLS

Motivating Observations

» Consistency checking required for ungraceful
shutdown due to potential for sequence of
updates to have only partially completed.

« File system consistency checkers are time
consuming for large disks.

» Unsatisfactory boot times where consistency
checking is required.

THE UNIVERSITY OF 6
NEW SOUTH WALLS

=

Basic Idea!!!
« Buffer sequence of updates in memory

and write all updates sequentially to disk in
one go.

B Meta-

Example

AN
OV Lo] |

Disk
THE UNIVERSITY OF 7 THE UNIVERSITY OF 8
-@ NEW SOUTH WALES -@ NEW SOUTH WALES
Implementing Stable Storage
Issues Eco
; Disk R \1 Disk 2 ; Disk 2 ; Dis 2 , Disk .
» How do we now find I-nodes that are scattered g ?
around the disk? % New Nev g New - [New
= Keep a map of inode locations } } t
- Inode map is also “logged” Crash © Crash(b) Cr(a:)h (d)Crash © Crash

— Assumption is I-node map is heavily cached and
rarely results in extra disk accesses

— To find block in the I-node map, use two fixed location
on the disk contains address of block of the inode
map

» Two copies of the inode map addresses so we can recover if
error during updating map.

THE UNIVERSITY OF 9
NEW SOUTIT WALTS
—

» Use two disks to implement stable storage

— Problem is when a write (update) corrupts old version,
without completing write of new version

— Solution: Write to one disk first, then write to second after
completion of first

THEE UNIVERSITY OF 10
NEW SOUTH WALTS
LS

LFS versus FFS

» Comparison of creating two small files

filel file2

Block key: Inode . Directory D Data

Sprite LFS

THEE UNIVERSITY OF 1"
NEW SOUTH WALTS

s

Issue
Disks are Finite in Size

+ File system “cleaner” runs in background
— Recovers blocks that are no longer in use by
consulting current inode map
+ Identifies unreachable blocks
— Compacts remaining blocks on disk to form
contiguous segments for improved write
performance

THE UNIVERSITY OF 12
NEW SOUTH WALTS

=

Cleaner

» Uses a combination of threaded log and
copy and compact

Block Key: Threaded log
Old data block %

Copy and Compact
Old log end New log end Old fog end New log end

New data block I]

/
PrevmuslydelewdD Vi

THEE UNIVERSITY OF 13
NEW SOUTH WALTS

s

Issue
Recovery

 File system is check-pointed regularly which saves
— A pointer to the current head of the log
— The current Inode Map blocks
+ On recovery, simply restart from previous checkpoint.

— Can scan forward in log and recover any updates written after
previous checkpoint

— Write updates to log (no update in place), so previous checkpoint
always consistent

THE UNIVERSITY OF
NEW SOUTH WALLS

Checkpoint
L

Location 14

Reliability

+ Updated data is written to the log, not in
place.

* Reduces chance of corrupting existing
data.
—Old data in log always safe.
— Crashes only affect recent data

+ As opposed to updating (and corrupting) the root
directory.

THEE UNIVERSITY OF 15
NEW SOUTH WALTS
s

Performance

« Comparison between LFS
and SunOS FS

Key: [Sprite LFS

— Create 10000 1K files | s sec (meas
— Read them (in order) 160 == =
— Delete them i

+ Order of magnitude -]
improvement in & =
performance for small 40
writes p ‘

Create Read Delete
10000 1K file access

THEE UNIVERSITY OF 16
NEW SOUTH WALTS
LS

LFS a clear winner?

Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan
*File System Logging Versus Clustering: A Performance Comparison”

* Authors involved in BSD-LFS
— log structured file system for BSD 4.4
— enable direct comparison with BSD-FFS
« including recent clustering additions
+ Importantly, a critical examination of
cleaning overhead

THEE UNIVERSITY OF 17
NEW SOUTH WALTS

s

Clustering

THE UNIVERSITY OF 18
NEW SOUTH WALTS

=

Original Sprite-LFS Benchmarks
Small file

Large File Performance
100 Meg file

s

NEW SOUTH WALES

%

NEW SOUTH WALES

25
1200 _
5 100 g g 20
§ 800] S s
P o : R
gﬂ I TENRSES . | |
AT allaBITH B LIl
Create Read Delete. seqwite | seqread | randwite | randread | revead
Spite-LFS M swosFrs [BSDFFS-mer2 SpriteLFS W sin0sFFs [BsD-FFSm82
B esoLrs H BsoFFsmir2 [EESIE Hasofrsmie
THEE UNIVERSITY OF 19 THE UNIVERSITY OF 20
NEW SOUTH WALFS NEW SOUTH WALES
__ 25
5
9 90—
2 2
,g 25 < s
& 20 s "
s ot 2 —
e WS £ 10
b= g
2 1.0-—1— g 05
2
g 05 F oo T
3 o
= 0.0 T T T TTT 1 16 256 4096 65536
1 16 256 4096 65536 File Size (in KB)
File Size (in KB)
LFS — FFS-m8r0 ' FFS-m8r2
LFS — FFS-m8r0 FFS-m8r2
THEE UNIVERSITY OF 21 THE UNIVERSITY OF 22
NEW SOUTH WALFS NEW SOUTH WALES
s LS
25 T 1024
] g 512
kg o 256
a S
g S 128
5] 64
5 5 32 — e
2 3 16
g b 8 o~
3 g 4 AY
£ g 2
0.0 T T T TTT [1 T T T 7T
1 16 256 4096 65536 1 16 256 4096 65536
File Size (in KB) File Size (in KB)
LFS — FFS-m8r0 ** FFS-m8r2 LFs — FFS-m8r0 *** FFS-m8r2
ﬁ THEE UNIVERSITY OF 23 THE UNIVERSITY OF 24

4500
40.00
35.00
30.00
25.00
20,00
1500
1000
500
0.00 T

4000 5000 6000 7000 8000 9000

Transactions per secand

Disk utiization (percent)

© LFS wickeaner = LFS wiout cleaner & Frs

THEE UNIVERSITY OF 25
NEW SOUTH WALTS

s

%

LS

LFS not a clear winner

When LFS cleaner overhead is ignored, and FFS runs on a new,
unfragmented file system, each file system has regions of performance
dominance.

— LFSis an order of magnitude faster on small file creates and deletes.

— The systems are comparable on creates of large files (one-half megabyte or more).

— The systems are comparable on reads of files less than 64 kilobytes.

— LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS
is comparable.

— LFS write performance is superior for files of 256 kilobytes or less.

— FFSwrite performance is superior for files larger than 256 kilobytes.
Cleaning overhead can degrade LFS performance by more than 34% in a
transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.

THEE UNIVERSITY OF 26
NEW SOUTH WALTS

Take-away

» When meta-data operation are the bottle
neck, LFS wins.

+ Cleaning over-head degrades LFS
performance significantly as utilisation
rises.

THEE UNIVERSITY OF 27
NEW SOUTH WALTS
s

L

Journaling file systems

Hybrid of

— |-node based file system

— Log structured file system (journal)

Many variations

— log only meta-data to journal (default)

— log-all to journal

Need to write-twice (i.e. copy from journal to i-
node based files)

Example — ext3

— Main advantage is guaranteed meta-data consistency

THEE UNIVERSITY OF 28
NEW SOUTH WALTS

