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Learning Outcomes

* An understanding of hybrid approaches
to thread implementation

« A high-level understanding of scheduler
activations, and how they overcome the
limitations of user-level and kernel-level
threads.
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« Thomas Anderson, Brian Bershad, Edward
Lazowska, and Henry Levy. Scheduler Activations:
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User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

% Blocking blocks all threads in a process
— Syscalls
— Page faults

% No thread-level parallelism on multiprocessor
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Kernel-level Threads

% Slow thread management (creation, deletion,
switching, synchronisation...)
» System calls

v Blocking blocks only the appropriate thread in
a process

v Thread-level parallelism on multiprocessor
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Scheduler Activations

« First proposed by [Anderson et al. 91]

+ |dea: Both schedulers co-operate
+ User scheduler uses system calls
+ Kernel scheduler uses upcalls!
» Two important concepts
— Upcalls
+ Notify the user-level of kernel scheduling events
— Activations
- A new structure to support upcalls and execution

— approximately a kernel thread
+ As many running activations as (allocated) processors

- Kernel controls activation creation and destruction
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Performance
Table I: Thread Operation Latencies (usec.)
Topaz Ultrix
Operation FastThreads threads processes
Null Fork 34 048 11300
Signal-Wait 37 441 1840
cse
Hybrid Multithreading
v"Can get real thread parallelism on
multiprocessor
% Blocking still a problem!!!
cse

Scheduler Activations
« Instead of CPU time wasted

User Space _sy%:a_l_l __________ —

Kernel Space ‘Meei'_ 'L“;ﬁu
Hardware ‘8 /

 ...rather use the following scheme:
CPU used

User Space

\ f f
Kernel Space \_/\“Pca” Jupcail

Hardware ‘8 /

THE UNIVERSITY OF
NEW SOUTH WALES




CSe

Upcalls to User-level
scheduler

» New (processor #)
— Allocated a new virtual CPU
— Can schedule a user-level thread
« Preempted (activation # and its machine state)
— Deallocated a virtual CPU
— Can schedule one less thread
« Blocked (activation #)
— Notifies thread has blocked
— Can schedule another user-level thread
« Unblocked (activation # and its machine state)
— Notifies a thread has become runnable
— Must decided to continue current or unblocked thread
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Working principle

+ Blocking syscall scenario on 2 processors

Process
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» Blocking syscall scenario on 2 processors
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Working principle

» Blocking syscall scenario on 2 processors
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Scheduler Activations

« Thread management at user-level
— Fast
 Real thread parallelism via activations
— Number of activations (virtual CPUs) can equal
S

« Blocking (syscall or page fault) creates new
activation

— User-level scheduler can pick new runnable
thread.

Fewer stacks in kernel
— Blocked activations + number of virtual CPUs
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Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.
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Adoption

» Adopters

— BSD “Kernel Scheduled Entities”
+ Reverted back to kernel threads

— Variants in Research OSs: K42, Barrelfish

— Digital UNIX

— Solaris

— Mach

— Windows 7 64-bit User Mode Scheduling
» Linux -> kernel threads
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Table IV. Thread Operation Latencies (usec.)
FastThreads on FastThreads on
Operation Topaz Threads  Scheduler Activations Topaz threads  Ultrix processes
Null Fork 34 37 948 11300
Signal-Wait 37 42 441 1840
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execution time (sec.)

Fig. 3. Execution
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Fig. 1. Example: IO request /completion




