Scheduler Activations

THE UNIVERSITY OF

[Including some slides modified from Raymond Namyst, U. Bordeaux

Learning Outcomes

* An understanding of hybrid approaches
to thread implementation

« A high-level understanding of scheduler
activations, and how they overcome the
limitations of user-level and kernel-level
threads.

THE UNIVERSITY OF
NEW SOUTH WALES

« Thomas Anderson, Brian Bershad, Edward
Lazowska, and Henry Levy. Scheduler Activations:
Effective Kernel Support for the User-Level
management of Parallelism. ACM Trans. on
Computer Systems 10(1), Feburary 1992, pp. 53-79.

THE UNIVERSITY OF
NEW SOUTH WALES

User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

% Blocking blocks all threads in a process
— Syscalls
— Page faults

% No thread-level parallelism on multiprocessor

THE UNIVERSITY OF
NEW SOUTH WALES

4/25/2013

User-level Threads

User Mode

Scheduler (Scheduler) (Scheduler]
L Process ‘ Procesp B J

Scheduler

Kernel Mode

ERSITY OF
NEW SOUTH WALES

Kernel-Level Threads

o

Scheduler

Kernel Mode

ERSITY OF
NEW SOUTH WALES

Kernel-level Threads

% Slow thread management (creation, deletion,
switching, synchronisation...)
» System calls

v Blocking blocks only the appropriate thread in
a process

v Thread-level parallelism on multiprocessor

THE UNIVERSITY OF
NEW SOUTH WALES

4/25/2013

cse
Hybrid Multithreading
User Mode
Proce: ‘ Process B ss C
Scheduler
Kernel Mode
NEV»/SOUg'?'Is‘J\IVAL%
cse

Scheduler Activations

« First proposed by [Anderson et al. 91]

+ |dea: Both schedulers co-operate
+ User scheduler uses system calls
+ Kernel scheduler uses upcalls!
» Two important concepts
— Upcalls
+ Notify the user-level of kernel scheduling events
— Activations
- A new structure to support upcalls and execution

— approximately a kernel thread
+ As many running activations as (allocated) processors

- Kernel controls activation creation and destruction

THE UNIVERSITY OF
NEW SOUTH WALES

cse
Performance
Table I: Thread Operation Latencies (usec.)
Topaz Ultrix
Operation FastThreads threads processes
Null Fork 34 048 11300
Signal-Wait 37 441 1840
cse
Hybrid Multithreading
v"Can get real thread parallelism on
multiprocessor
% Blocking still a problem!!!
cse

Scheduler Activations
« Instead of CPU time wasted

User Space _sy%:a_l_l __________ —

Kernel Space ‘Meei'_ 'L“;ﬁu
Hardware ‘8 /

 ...rather use the following scheme:
CPU used

User Space

\ f f
Kernel Space _/\“Pca” Jupcail

Hardware ‘8 /

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Upcalls to User-level
scheduler

» New (processor #)
— Allocated a new virtual CPU
— Can schedule a user-level thread
« Preempted (activation # and its machine state)
— Deallocated a virtual CPU
— Can schedule one less thread
« Blocked (activation #)
— Notifies thread has blocked
— Can schedule another user-level thread
« Unblocked (activation # and its machine state)
— Notifies a thread has become runnable
— Must decided to continue current or unblocked thread

THE UNIVERSITY OF
NEW SOUTH WALES

Working principle

+ Blocking syscall scenario on 2 processors

Process

$ 3

THE UNIVERSITY OF
NEW SOUTH WALES

Working principle
» Blocking syscall scenario on 2 processors

Process

fs

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Working principle

» Blocking syscall scenario on 2 processors

Process

i 5808

THE UNIVERSITY OF
NEW SOUTH WALES

4/25/2013

CSe

Working principle
« Blocking syscall scenario on 2 processors

Process

$ S

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Working principle
» Blocking syscall scenario on 2 processors

Process

%

Preempt

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Working principle

» Blocking syscall scenario on 2 processors

Process

is

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Working principle
» Blocking syscall scenario on 2 processors

Process

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Working principle
+ Blocking syscall scenario on 2 processors

Process

THE UNIVERSITY OF
NEW SOUTH WALES

4/25/2013

Working principle

» Blocking syscall scenario on 2 processors

Blocking syscall

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Working principle

» Blocking syscall scenario on 2 processors

1/O completion

THE UNIVERSITY OF
NEW SOUTH WALES

CSe

Working principle

+ Blocking syscall scenario on 2 processors

Process

§

THE UNIVERSITY OF
NEW SOUTH WALES

Scheduler Activations

« Thread management at user-level
— Fast
 Real thread parallelism via activations
— Number of activations (virtual CPUs) can equal
S

« Blocking (syscall or page fault) creates new
activation

— User-level scheduler can pick new runnable
thread.

Fewer stacks in kernel
— Blocked activations + number of virtual CPUs

THE UNIVERSITY OF
NEW SOUTH WALES

Performance
(compute-bound)

-0~ Topaz threads
—* orig FastThrds
% new FastThrds

speedup

1 2 3 4 5 6

number of processors

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.

THE UNIVERSITY OF
NEW SOUTH WALES

Adoption

» Adopters

— BSD “Kernel Scheduled Entities”
+ Reverted back to kernel threads

— Variants in Research OSs: K42, Barrelfish

— Digital UNIX

— Solaris

— Mach

— Windows 7 64-bit User Mode Scheduling
» Linux -> kernel threads

THE UNIVERSITY OF
NEW SOUTH WALES

4/25/2013

CSe
Table IV. Thread Operation Latencies (usec.)
FastThreads on FastThreads on
Operation Topaz Threads Scheduler Activations Topaz threads Ultrix processes
Null Fork 34 37 948 11300
Signal-Wait 37 42 441 1840
THE UNIVERSITY OF
NEW SOUTH WALES

execution time (sec.)

Fig. 3. Execution

Performance
(1/0 Bound)

1007

& Topaz threads
80 1 ~& orig FastThrds
¥ new FastThrds

T
100% 90% 80% 70% 60% 50% 40%

% available memory

time of N-Body application versus amount of available memory, 6

ErOceSSOl‘S.
cse
Time _User Program User Progam e
I §
Usec-Level)fv f fz)’\) 7 5(2) 5{‘\;)
Runtine. | /7 : I 55 i d ;
System E;] m FA =] &) F
0
operating | [V ® Y
System Add Ad A's thread
Kemel Processor | Processor has blocked

s @ @

e

THE UNIVERSITY OF
NEW SOUTH WALES

™ Time
T';" User Program User Program T4
User-Level 20
Runtime 53) g’” "ﬂ
System { i
. =]
j [(a) [B)Y T [y (©) D)
Operaing A's thread
System and B's
Kemel thread can
continue
cesrs o0

o9

Fig. 1. Example: IO request /completion

