Security Policy & Mechanisms

+ Policy decides what kinds of entities can
perform operations on what kinds of
Security Il objects |
— Deals with users, processes, students, files,
printers, managers
« Example: Students can’t use the colour printer
* Protection mechanisms are used to
represent and enforce security policy

— Example: reference monitor looks up a table
representing a policy and decided yes/no.

@ THE UNIVERSITY OF COMP3231 1 @ THE UNIVERSITY OF COMP3231 2
NEW SOUTIT WALTS NEW SOUTIT WALTS
s LS

Protection Mechanisms Protection Domains

» Protection system deals with

— Objects
« Set of ‘things’ in the system that can be operated on
— Files, devices, sockets, etc...

Domain 1 Domain 2 Domain 3

— Rights File1[R] File3[R] FileB[RWX]
« The permission to perform one of the operations possible on Filed[RWX]
an object File2[RW] FileS[RW] Plotter2[W]

— Example: Possessing permission to read an object is termed
possessing a read right to the object.

— Domains

« A set of (object, right) pairs which together represent the set
of possible operations on objects.

« Each process has a domain associated with it. Examples Of three prOteCtion domains
@ THE UNIVERSITY OF COMP3231 3 -@ THE UNIVERSITY OF COMP3231 4
NEW SOUTH WALLS NEW SOUTH WALES
L
Protection Domain Example Representing Protection Domains
« UNIX Object
File1 File2 File3 File4 File5 File6 Printer1 Plotter2
—The UID and GID of a process determines the Domair e
domain the process executes within TR wie
- Determines exactly what rights the process has to 2 Read | hoxd | Read Wite
objects (files) in the system Execute | Write
. . Read
— Another process with the same UID, GID lies 3 Wite | wite | wite
with the same domain edtie
. ygjse;éactly the same set of access rights to Represent access rights using a
— Process can change domains to gain access protection matrix
rights via SETUID or SETGUID
THI ‘N?’r‘r}f\k‘\‘\‘/\\(\)‘s COMP3231 5 r\:‘u\\x\?mwrx\w\\l\‘(‘)\g COMP3231 6
-@ NEW S -@

Protection Domains

Object
File1 File2 File3 File4 Files File6 Printerl Plotter2 Domain1 Domain2 Domain3
main
Read
1| Read | fead Enter
Read
2 Read | Wiile | Pead Write
Execute
Read
3 Write Write Write
Execute

A protection matrix with domains as objects

Access Matrix Issue

» Most domains have access to a subset of all
objects in the system
=Matrix is sparsely populated
—=Wastes space
* ldea

+ Store populated entries by column (object)

« List of domains and operation that can operate on the object
+ Store populated entries by rows (domain)

« List of objects and operations domain can perform

« Note: Domains are sometimes termed subject, or principal.

@ THE UNIVERSITY OF COMP3231 7 @ THE UNIVERSITY OF COMP3231 8
NEW SOUTIT WALTS NEW SOUTIT WALTS
s LS
Object Owner
File1 File2 Filed File4 File5 File6 Printerl Plotter2 Procass
Domain
Read User
1 Read Write space
Read
2 Read | Write | Read Wiite
Execute e
Read 5 AW B ACL
3 Write | Write | Write File —>[F1}—>[a:rw: B:A
Execute Kernel
space

» Columns: Access Control Lists
* Rows: Capabilities

@ THE UNIVERSITY OF COMP3231 9
NEW SOUTH WALTS

Use of access control lists of manage file access

@ THE UNIVERSITY OF COMP3231 10
NEW SOUTH WALTS
LS

Access Control Lists

» List stored with meta-data of object
— Example: stored in the inode of the file
+ Easy to revoke access to the object
+ Easy to determine who has (direct) rights
to the file
— ‘direct’ meaning ignoring transitive rights
changes
» Example: A writes B, B writes C = A writes C

@ THE UNIVERSITY OF COMP3231 1
NEW SOUTH WALTS

s

Capabilities

Owner

Process
User
space
' ' '
' ' '
v

F2RW Fa:RX Kernel
space

F3:RWX
\C-Iist
Each process has a capability list
@ THE UNIVERSITY OF COMP3231 12
NEW SOUTH WALLS
L

Capabilities Summary

Capability list stored with the subject (e.g. the process)
+ Set of capabilities forms the protection of domain of the

 Protections mechanisms deal with

subject domains, objects, access rights
— Easy to determine the protection domain of the process . Can use a pl’OtECtiOﬂ matrix to represent a
— Easier to apply principle of least authority . .
+ Hard to determine who has (direct) access to a particular security policy
object , + Protection matrix can be represented by
— Capabilities can be stored many places (with each process, each .
user, etc..) ACLs or Capabilities

— Have to examine them all for one referring to the object
» Revocation is more difficult (especially selective)
— Have to remove all capabilities to an object

@ THE UNIVERSITY OF COMP3231 13 @ THE UNIVERSITY OF COMP3231 14
NEW SOUTH WALLS NEW SOUTH WALLS
L L
. Trusted Systems
Building Secure Systems .
Trusted Computing Base
» Sometimes called Trusted Systems TR—
» Consist on users/processes running on Trusted
Computing Base (TCB) User
space
M Idea All system calls go through the
— TCB has a small, understandable, verifiable, security reference monitor for security checking
model
- -
— Enables statements/reasoning about security Tm Kemel
. rusted comp Ise space
proﬂpertles . " Operating system kernel
« “Bob can never read file X
« “Alice can only run the word processor”
« “The program can only modify file Z” .
— All operations are authorised via the TCB. A reference monitor
@ THE UNIVERSITY OF COMP3231 15 @ THE UNIVERSITY OF COMP3231 16
NEW SOUTH WALLS NEW SOUTH WALLS
L L
Formal Models of Secure Systems :
Access Control Policy
Objects Objects . .
N N « Discretionary Access Control
Compiler Mailbox 7 Secret Compiler Mailbox 7 Secret .
cic | Read fic | Read — Allow users to determine who can read and
" | Eecue " | Eecue write their files
Read | Read Read | Read . \ .
Horry | cocmute | wiite Henry | groente | Wite — Policy not enough to control information flow
Robert | Read Read Rovert | _Read | Roagy | Read — Example: UNIX
Execute Write Execute e Write
o o * Mandatory Access Control
(a) An authorized state — System determines (and enforced) who can
(b) An unauthorized state (Robert can read Henry’s mailbox) read and write individual files
Given a set of authorized and unauthorized states, and the TCB'’s security . .
model, can we prove that starting at (a), (b) can never happen?? - Example pO|ICIeSC Bell-La Padula and Biba
-@ THE UNIVERSITY OF COMP3231 17 @ THE UNIVERSITY OF COMP3231 18
NEW SOUTH WALES NEW SOUTH WALLS
L

Bell-La Padula Multilevel Security

» Designed to keep secrets
— Simple security property
« Aprocess at level k read objects at it’s level or lower
— Lieutenant can read sergeants files, but not vice versa
— Can read down

— The * property
« A process can write files to it’s level or above

— Sergeants can write information to Lieutenants, who can write to
Generals.

— Can write up
+ lIssue

— Generals can't write to Lieutenants, etc.
« Can't write down

— Privates can write to generals potentially false information

@ THE UNIVERSITY OF COMP3231 19
NEW SOUTH WALTS
s

Multilevel Security

Security level

Legend

Process Object

& ol

The Bell-La Padula multilevel security model

-@ THE UNIVERSITY OF COMP3231 20
NEW SOUTH WALES

Multilevel Security
The Biba Model

» Principles to guarantee integrity of data

1. Simple integrity principle
* process can write only objects at its security level or
lower

2. The integrity * property

* process can read only objects at its security level or
higher

@ THE UNIVERSITY OF COMP3231 21
NEW SOUTH WALTS
s

Multilevel Security
The Biba Model
— Managers can write the files of employees
— Employees cannot write the files of managers
— Employees read (trust) files of managers
— Managers cannot read (trust) the files of employees
» Note: Biba and Bell-La Padula are in direct conflict
with each other

— Developing and formalising a realistic and practical
security policy is hard

@ THE UNIVERSITY OF COMP3231 22
NEW SOUTH WALTS
LS

Covert Channels

Client Server Collaborator Encapsulated server

/L
[[[
o o | R e () [
Kernel Kerner_ \ Covert
channel

(a) (b)
Client, server and

Encapsulated server can
collaborator processes

still leak to collaborator via
We’d like to confine covert channels
the server so as to not

> N Example: CPU modulation
@ pass on client’s info

THE UNIVERSITY OF COMP3231 23
NEW SOUTH WALTS

s

TYYYCTCYY
13

Server locks
file to send 1
1

Collaborator —-

Server unlocks
file to send 0
0 1 0 <— Bit stream sent

Time —

0
;

A covert channel using file locking
(Assuming a common read-only file)

-@ THE UNIVERSITY OF COMP3231 24
NEW SOUTH WALES

Covert Channels

» Can be created using a any shared
resource whose behaviour can be
monitored
— Network Bandwidth
— CPU time
— Disk Response time
— Disk Bandwidth

@ THE UNIVERSITY OF COMP3231
NEW SOUTH WALTS
s

25

