Chapter 6

Deadlocks

6.1. Resources

6.2. Introduction to deadlocks

6.3. The ostrich algorithm

6.4. Deadlock detection and recovery
6.5. Deadlock avoidance

6.6. Deadlock prevention

6.7. Other 1ssues

-%- THE UNIVERSITY OF
NEW SOUTH WALES

Learning Outcomes

» Understand what deadlock is and how it
can occur when giving mutually exclusive
access to multiple resources.

» Understand several approaches to
mitigating the issue of deadlock In
operating systems.

— Including deadlock detection and recovery,
deadlock avoidance, and deadlock
prevention.

B
L THE UNIVERSITY OF
S NEW SOUTH WALES

Resources

« Examples of computer resources
— printers
— tape drives
— Tables in a database

Processes need access to resources in reasonable
order

Preemptable resources
— can be taken away from a process with no ill effects

Nonpreemptable resources
— will cause the process to fail if taken away

THE UNIVERSITY OF 3

ée%__w
Sl NEW SOUTH WALES

Resources & Deadlocks

* Suppose a process holds resource A and requests
resource B
— at same time another process holds B and requests A
— both are blocked and remain so - Deadlocked

 Deadlocks occur when ...

— processes are granted exclusive access to devices,
locks, tables, etc..

— we refer to these entities generally as resources

!
SR THE UNIVERSITY OF)
@ NFW SOUTH WALES

Resource Access

« Sequence of events required to use a resource
1. request the resource

2. use the resource
3. release the resource

« Must wait if request is denied
— requesting process may be blocked
— may fail with error code

!
SR THE UNIVERSITY OF °
@ NFW SOUTH WALES

Two example resource usage patterns

semaphore res_1, res_2; semaphore res_1, res_2;
void proc_A() { void proc_A() {
| down(&res_1); |] down(&res_1);
% down(&res_2); 2, down (&res_2);
use_both_res () ; use_both_res();
\‘/ up (&res_2); up (&res_2);
up (&res_1); up (&res_1);
} }
void proc_B() { void proc_B() {
) down(&res_1); 2 down (&res_2);
<- down (&res_2); o down (&res_1);
use_both_res () ; use_both_res () ;
up (&res_2); up (&res_1);
up (&res_1); up (&res_2);
}
L] THE UNIVERSITY OF 6

Introduction to Deadlocks

« Formal definition :
A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause

« Usually the event is release of a currently held

resource
* None of the processes can ...
— run

— release resources
— be awakened

st
W[

Four Conditions for Deadlock

1. Mutual exclusion condition
each resource assigned to 1 process or is available

2. Hold and wait condition
process holding resources can request additional

5. No preemption condition

previously granted resources cannot forcibly taken
away

+. Circular wait condition
 must be a circular chain of 2 or more processes

« each is waiting for resource held by next member of
the chain

==
:-,5;5 THE UNIVERSITY OF 8
@il NEW SOUTH WALES

Deadlock Modeling

» Modeled with directed graphs

o B e

T U

; ® \@/

(a) (b) ()
— resource R assigned to process A
— process B is requesting/waiting for resource S

— process C and D are in deadlock over resources T
and U

B Yy A

Deadlock Modeling

1. Arequests R
2. Brequests S
3.Crequests T
4. Arequests S
5 Brequests T
6. C requesis R
deadlock

(d)

%quest R fequest S l’équest T
equest S Request T Vﬁequest R

Release R Release S Release T
Release S Release T Release R

(a) (b) (c)

®|E® © | @ i)

T

(e) (f) (9)

(

How deadlock occurs

Deadlock Modeling

1. Arequests R
2.Crequests T \ . @ . . @
3. Arequests S ° e e e

4. C requests R

5. Areleases R

6. Areleases S
no deadlock R = U R S R S I

(k) () (m)

AC AC @c

(o) (p) (a)
How deadlock can be avoided

Deadlock

Strategies for dealing with Deadlocks
1. Just ignore the problem altogether
2. detection and recovery

3. dynamic avoidance
careful resource allocation

+. prevention
* negating one of the four necessary conditions

THE UNIVERSITY OF 12

@8l NEW SOUTH WALES

Approach 1: The Ostrich Algorithm

* Pretend there is no problem

* Reasonable if
— deadlocks occur very rarely
— cost of prevention is high
« Example of “cost”, only one process runs at a time
« UNIX and Windows takes this approach for
some of the more complex resource
relationships to manage

* It's a trade off between
— Convenience (engineering approach)
— Correctness (mathematical approach)

FL| THE UNIVERSITY OF 13

Approach 2: Detection and
Recovery
* Need a method to determine if a system is
deadlocked.

» Assuming deadlocked is detected, we
need a method of recovery to restore
progress to the system.

i)
Rl THE UNIVERSITY OF 14
NEW SOUTH WALES

Approach 2
Detection with One Resource of Each Type

A O

S U AP
I A
0]

U v
é-‘

b

(a) (b)

* Note the resource ownership and requests

* A cycle can be found within the graph, denoting
deadlock

201 THE UNIVERSITY OF 15
NEW SOUTH WALES

What about resources with

multiple units?

* We need an approach for dealing with
resources that consist of more than a
single unit.

- THE UNIVERSITY OF
NEW SOUTH WALES

16

Detection with Multiple Resources of Each
Type

Resources in existence Resources available
(E1, E2, E3, Em) (A1, A2, A3, Am)
Current allocation matrix '
dc - L
C. C. Gy Ol R R R o R D
Coy Cp Gy 777G R, o2 '3 . 'om
(: ___Cn1 Cn2 Cn3 T Cnm_ _Rn1 an I:%n?: S an_
Row n is current allocation Row 2 is what process 2 needs

to process n

Data structures needed by deadlock detection
algorithm

ZL] THE UNIVERSITY OF 1
@8 NEW SOUTH WALES

Note the following invariant

Sum of current resource allocation +
resources available = resources that exist

Zn: C,+A, =E,
=l

| THE UNIVERSITY OF 18
NEW SOUTH WALES

Detection with Multiple F
Tvpe

Current allocation matrix

esources of Each

Request matrix

[t

= O D
o =0
oo =

19

Detection Algorithm

1. Look for an unmarked process P, for

which the /th row of R is less than or
equal to A

2. If found, add the i-th row of C to A, and
mark Pi. Go to step 1

3. If no such process exists, terminate.
Remaining processes are deadlocked

B
L THE UNIVERSITY OF 20

@ NEW SOUTH WALES
. s .

Example Deadlock Detection

E=4 2 3 1 A=Q2 1 0 0
0 0 1 0) 2 0 0 1
C=/2 0 0 1 R=|1 0 1 0
01 2 0 2 1 0 0,

21

Example Deadlock Detection

E=(4 2 3 1 A=2 1 0 0
0 0 1 0 2.0 0 1)
C=2 0 O 1 R={1 0 1 O
0 1 2 0)) (2 1 0 0,

22

Example Deadlock Detection

E=4 2 3 1 A=Q2 2 2 0)
0 0 1 0) 2 0 0 1
C=|2 0 0 1 R=l1 01 0

23

Example Deadlock Detection

24

Example Deadlock Detection

E=4 2 3 1 A=4 2 2 1)

==C=(2 0 0 1| EEEEE)-1 0 1 0
—

Example Deadlock Detection

E=@4 2 3 1 A=4 2 2 1
0 0 1 0) (20 0 1)
=X =2 0 0 1 R=|1 0 1 O

26

Example Deadlock Detection

E=4 2 3 1
(0 1 0)
= =|2 0 1

A=(4 2 2 1)

I

R =

27

Example Deadlock Detection

E=(4 2 3 1 A=4 2 3 1
=> (0 0 1 0) 2 0 0 1)
=<=(2 0 0 1 R=[1 01 0
=) |0 1 2 0, 2 1 0 0,

28

Example Deadlock Detection

 Algorithm terminates with no unmarked
processes

— We have no dead lock

| THE UNIVERSITY OF
NEW SOUTH WALES

29

Example 2: Deadlock Detection

» Suppose, P3 needs a CD-ROM as well as
2 Tapes and a Plotter

E=4 2 3 1 A=Q2 1 0 0
0 0 1 0) 2 0 0 1)
C=/2 0 0 1 R=|1 01 0

B
i THE UNIVERSITY OF 30

Recovery from Deadlock

» Recovery through preemption
— take a resource from some other process
— depends on nature of the resource

* Recovery through rollback
— checkpoint a process periodically
— use this saved state
— restart the process if it is found deadlocked

==
B | THE UNIVERSITY OF 31
NEW SOUTH WALES

Recovery from Deadlock

» Recovery through killing processes
— crudest but simplest way to break a deadlock
— Kill one of the processes in the deadlock cycle
— the other processes get its resources

— choose process that can be rerun from the
beginning

==
Rl THE UNIVERSITY OF 32
NEW SOUTH WALES

Approach 3
Deadlock Avoidance

* |nstead of detecting deadlock, can we
simply avoid it?
— YES, but only if enough information is

available in advance.
« Maximum number of each resource required

B
=i THE UNIVERSITY OF 33
NEW SOUTH WALES

Deadlock Avoidance
Resource Trajectories

*P’ u (Both processes
finished)
Printer

| 7
Plotter '° ?&X\&N

B

A
\

> Plotter

Two process resource trajectories

s - THE UNIVERSITY OF 34
NEW SOUTH WALES

Safe and Unsafe States

» A state is safe it
— The system is not deadlocked

— There exists a scheduling order that results in
every process running to completion, even if
they all request their maximum resources
Immediately

==
Rl THE UNIVERSITY OF 35
NEW SOUTH WALES

Safe and Unsafe States

Note: We have 10 units
of the resource

Has Max Has Max Has Max Has Max Has Max
3 9 3 9 Al 3 9 Al 3 9 3 9
Bl 2 4 B | 4 4 Bl1O0O | - Bl O - Bl O -
2 7 2 7 C|l 2 7 C| 7 7 0| -

j- THE UNIVERSITY OF 36

Safe and Unsafe States

A requests one extra unit resulting in (b)

Has Max Has Max Has Max Has Max

Al 3 9 4 9 4 9 4 9

B | 2 4 B 2 4 B | 4 4 B| —| —

2 7 2 7 2 7 2 7
Free: 3 Free: 2 Free: 0 Free: 4
(a) (b) (c) (d)

L THE UNIVERSITY OF 37

Safe and Unsafe State

« Unsafe states are not necessarily deadlocked
— With a lucky sequence, all processes may complete

— However, we cannot guarantee that they will
complete (not deadlock)

« Safe states guarantee we will eventually
complete all processes

» Deadlock avoidance algorithm
— Only grant requests that result in safe states

? THE UNIVERSITY OF 38

NEW SOUTH WALES

Bankers Algorithm

* Modelled on a Banker with Customers
— The banker has a limited amount of money to loan customers
 Limited number of resources
— Each customer can borrow money up to the customer’s credit
limit
« Maximum number of resources required

 Basic Idea

— Keep the bank in a safe state

« So all customers are happy even if they all request to borrow up to
their credit limit at the same time.

— Customers wishing to borrow such that the bank would enter an
unsafe state must wait until somebody else repays their loan
such that the the transaction becomes safe.

L THE UNIVERSITY OF 39

The Banker's Algorithm for a Single Resource

Has Max Has Max Has Max
AlO 6 A 6 / Al 1 6
B| O 5 B 6) 5 v B | 2 5
C1l0 4 C | /(2 4 v C|l 2 4
DJ]O 7 D | 4 v D | 4 7

Free: 10 Freeﬂ%f Free@

(a) (b) ()

 Three resource allocation states
— safe
— safe

— unsafe
40

Banker's Algorithm for Multiple Resources

2] 2
FLELF S LS FD
Q\ AL Q\ o_)c»‘ O Q’K AD Q\ %0 O
— |A|3]0]|1]1 Aj1|(1|0|O0 E = (6342)
P = (5322)
~«|1BJof1]0]O Blo|1]1]2
e A =(T020Y
cCji1j|1|1]o Cp3|11]10]|0 ~12 1 —
— |pl1]|1]0]1 /Iplofo|1]o 5’!2 L
_ |elofo]o]fo VEl2]1[1]o0 2 324— %
Resources assigned Resources still needed

Example of banker's algorithm with multiple
resources

System should start in safe state!

j- THE UNIVERSITY OF 4

Banker's Algorithm for Multiple Resources

R o WP P o ¥

s & o &S s & o &S
0® Q "’\@, S QQ\ QQ’ @ {@ (§ NS
B RS S B o &

- AjJ3|]0]|1]|1 Aj1]11]0|O0 E = (6342)
— [Blof1[d]o0 slof1| 02| &- E?gggg
— |C11]1]111]60 Ci|3|(1]1]0(O0 [o/o

DI1l11lol1 ~bloflo|1]o0 21t
Sl

— |EJO|JO]O]O E}J2(1]1]0 y2.3 2
Resources assigned Resources still needed Clv+r2

Example of banker's algorithm with multiple
resources

Should we allow a request by B 1 scanner to
succeed?? 42

Banker's Algorithm for Multiple Resources

2] 2

FLELF S LS FD

Q\ AL Q\ o_)c»‘ O Q’K AD Q\ %0 O
Al3|O0|1]1 Aj1|(1|0|O0 E = (6342)
slo|1|d]o slo|1]| D2 i:ﬁgggg
cCji1j|1|1]o C|3|(1]0(0 (oo ®
Dy1|1]0]1 DJo|0]|1]0
Elo|o|d|oO Ej2|1]|D|o0
Resources assigned Resources still needed

Example of banker's algorithm with multiple
resources

Should we allow a request by B and E for 1 scanner
to succeed?? 4

Bankers Algorithm is not

commonly used In practice
* |t is difficult (sometimes impossible) to
know Iin advance

— the resources a process will require
— the number of processes in a dynamic system

] THE UNIVERSITY OF 44
NEW SOUTH WALES

Approach 4: Deadlock Prevention

» Resource allocation rules prevent
deadlock by prevent one of the four
conditions required for deadlock from
occurring

— Mutual exclusion
— Hold and walit

— No preemption
— Circular Wait

==
Rl THE UNIVERSITY OF 45

NEW SOUTH WALES

Approach 4
Deadlock Prevention

Attacking the Mutual Exclusion Condition

* Not feasible in general

— Some devices/resource are intrinsically not
shareable.

B
g THE UNIVERSITY OF 46
NEW SOUTH WALES

Attacking the Hold and Wait

Condition

Require processes to request resources before starting
— a process never has to wait for what it needs

Issues

— may not know required resources at start of run
* = not always possible

— also ties up resources other processes could be using

Variations:

— process must give up all resources if it would block holding a
resource

— then request all immediately needed resour
— prone to starvation

L THE UNIVERSITY OF 47

Attacking the No Preemption Condition

* This is not a viable option

» Consider a process given the printer
— halfway through its job

— now forcibly take away printer
— 1177

ER
B! THE UNIVERSITY OF
NEW SOUTH WALES

Attacking the Circular Wait Condition

1. Imagesetter @ 9
2. Scanner
3. Plotter

i

4. Tape drive j
5. CD Rom drive

(a) [) 2

* Numerically ordered resources
» Acquire resources in order

49

|33

Attacking the Circular Walit

Condition
« The displayed deadlock

cannot happen
— If A requires 1, it must

acquire it before t

acquiring 2
— Note: If B has 1, all

higher numbered

resources must be free or A B

held by processes who
doesn’'t need 1

* Resources ordering is a
common technigue in

e - THE UNIVERSITY OF 50
NEW SOUTH WALES

51

Summary of approaches to
deadlock prevention

Condition Approach
« Mutual Exclusion * Not feasible
* Hold and Wait * Request resources
initially
» No Preemption » Take resources away
« Circular Wait * Order resources
BB THE UNIVERSITY OF 52

NEW SOUTH WALES

Starvation

« A process never receives the resource it is waiting for,
despite the resource (repeatedly) becoming free, the
resource is always allocated to another waiting process.

— Example: An algorithm to allocate a resource may be to give the
resource to the shortest job first

— Works great for multiple short jobs in a system

— May cause a long job to wait indefinitely, even though not
deadlocked.

 One solution:

— First-come, first-serve policy

B
L THE UNIVERSITY OF 53
@%sl NEW SOUTH WALES

