Case study: ext2 FS

THE UNIVERSITY OF 1
NEW SOUTH WALES
e

Recap: i-nodes

* Each file is represented by an inode on disk
* Inode contains all of a file’s metadata
— Access rights, owner,accounting info
— (partial) block index table of a file
* Each inode has a unique number
— System oriented name
— Try ‘Is =i’ on Unix (Linux)
* Directories map file names to inode numbers
— Map human-oriented to system-oriented names

THE UNIVERSITY OF 3
NEW SOUTH WALES
e

mode
;;g Ext2 i-nodes
atime
ctime * Mode
mtime — Type
size * Regular file or directory
block count — Access mode
reference count * TWXIWXIWX
direct blocks * Uid
(12) — User ID
single indirect .
double indirect Gid
triple indirect = Group ID

THE UNIVERSITY OF 5
NEW SOUTH WALES
=1

The ext2 file system

* Second Extended Filesystem

— The main

Linux FS before ext3

— Evolved from Minix filesystem (via “Extended Filesystem”)

¢ Features

— Block size (1024, 2048, and 4096) configured at FS creation
— inode-based FS
— Performance optimisations to improve locality (from BSD

FFS)

* Main Problem: unclean unmount >e2£fsck
— Ext3fs keeps a journal of (meta-data) updates
— Journal is a file where updates are logged
— Compatible with ext2fs

THE UNIVERSITY OF
NEW SOUTH WALES
o

THE UNIVERSITY OF
NEW SOUTH WALES
=l

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(12)

single indirect

double indirect

triple indirect

THE UNIVERSITY OF
NEW SOUTH WALES
=1

File Attributes
Address of disk block 0 f—
Address of disk block 1 _
Address of disk block 2 —
Address of disk block 3 f—
Address of disk block 4 e
Address of disk block 5 —
Address of disk block 6 —
Address of disk block 7 E—
Address of block of pointers
Disk block
containing
additional
disk addresses
e atime
— Time of last access
* ctime
— Time when file was
created
* mtime
— Time when file was
last modified

mode
ud___Inode Contents
gid - Size
atime — Size of the file in bytes
ctime * Block count
mtime — Number of disk blocks used by
N the file.
SIZe * Note that number of blocks
block count can be much less than

expected given the file size
— Files can be sparsely
populated

* E.g. write(f,"hello”); Iseek(f,
1000000); write(f, “world”);

* Only needs to store the start
an end of file, not all the
empty blocks in between.

- Size = 1000005
— Blocks = 2 + overheads

reference count|

direct blocks
(12)
single indirect
double indirect
triple indirect

THE UNIVERSITY OF 7
NEW SOUTH WALES
e

Problem

* How do we store files greater than 12
blocks in size?
— Adding significantly more direct entries in the
inode results in many unused entries most of
the time.

THE UNIVERSITY OF 9
NEW SOUTH WALES
e

Single Indirection

* Requires two disk access to read
— One for the indirect block; one for the target block

* Max File Size
— Assume 1Kbyte block size, 4 byte block numbers
- 12* 1K + 1K/4 * 1K = 268 Kbytes

* For large majority of files (< 268 K), given the
inode, only one or two further accesses required
to read any block in file.

THE UNIVERSITY OF "
NEW SOUTH WALES
-

mode

uid

gid

atime

ctime

mtime

size

block count

reference count|

direct blocks (12)
40,58,26,8,12,
44,62,30,10,42,3,21

single indirect

double indirect

triple indirect

THE UNIVERSITY OF
NEW SOUTH WALES
o

mode

uid

gid

atime

ctime

mtime

size

block count

reference count|

direct blocks (12)
40,58,26,8,12,
44,62,30,10,42,3,21

single indirect: 32

double indirect

triple indirect

THE UNIVERSITY OF
NEW SOUTH WALES
=l

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks (12)
40,58,26,8,12,
44,62,30,10,42,3,21

single indirect: 32

double indirect

triple indirect

THE UNIVERSITY OF
NEW SOUTH WALES
=1

Inode Contents

* Direct Blocks
— Block numbers of first 12
blocks in the file
— Most files are small
* We can find blocks of file

directly from the inode

| 110

/3// /’4

11

I

63

Disk

Inode Contents

Single Indirect Block

— Block number of a block
containing block numbers

0 10 7
3 8 4
28 11
29 2 12|13| 7
— | Sl 14
46 0 9117| 5 15
61
43 56 1 16/ 6 |63
Disk

Inode Contents

Double Indirect Block

— Block number of a block
containing block numbers of
blocks containing block

numbers

File
11

[Sl=efe]sefe]~ele]s]

©

10

RN U R I RN N I G
[ol=[mle]a]o|o]~|=|ols = RlaslN]

mode

uid

gid

atime

ctime

mtime

size

block count

reference count|

direct blocks (12)
40,58,26,8,12,
44,62,30,10,42,3,21

Double Indirect Block

— Block number of a block
containing block numbers of
blocks containing block
numbers

* Triple Indirect

— Block number of a block
containing block numbers of
blocks containing block
numbers of blocks containing
block numbers ©

UNIX Inode Block Addressing

mode

2 owners

3 timestamps

size
block count

direct blocks
(12)

Scheme

ST

single indirect: 32
double indirect
triple indirect

THE UNIVERSITY OF 13
NEW SOUTH WALES

Max File Size

* Assume 4 bytes block numbers and 1K blocks

* The number of addressable blocks

— Direct Blocks = 12

— Single Indirect Blocks = 256

— Double Indirect Blocks = 256 * 256 = 65536

— Triple Indirect Blocks = 256 * 256 * 256 = 16777216
* Max File Size

— 12 + 256 + 65536 + 16777216 = 16843020 blocks =
16 GB

THE UNIVERSITY OF 15
NEW SOUTH WALES

Solution
block # location
0 through 11 Direct block
? Single-indirect block
Double-indirect blocks

THE UNIVERSITY OF 17
NEW SOUTH WALES
-

single indirect

double indirect -

triple indirect

THE UNIVERSITY OF 14
NEW SOUTH WALES
Rl

Where is the data block number

stored?

« Assume 4K blocks, 4 byte block numbers, 12 direct
blocks

« A 1 byte file produced by
Iseek(fd, 1048576, SEEK_SET) /* 1 megabyte */
write(fd, “x”, 1)

« What if we add
Iseek(fd, 5242880, SEEK_SET) /* 5 megabytes */
write(fd, “x”, 1)

@ THE UNIVERSITY OF 16
NEW SOUTH WALES
L
block # location
0 through 11 Direct block
12 through (11 + 1024 = 1035) Single-indirect block
? Double-indirect blocks
@ THE UNIVERSITY OF 18
NEW SOUTH WALES

E—

Solution

block #

location

0 through 11

Direct block

12 through (11 + 1024 = 1035)

Single-indirect block

1036 through (1035+1024*1024
=1049611)

Double-indirect blocks

Address = 1048576 ==> block number=?

Solution

block #

location

0 through 11

Direct block

12 through (11 + 1024 = 1035)

Single-indirect block

1036 through (1035+1024*1024
=1049611)

Double-indirect blocks

Address = 1048576 ==> block number=1048576/4096=256

@ THE UNIVERSITY OF 19 @ THE UNIVERSITY OF 20
NEW SOUTH WALES NEW SOUTH WALES
L
block # location block # location
0 through 11 Direct block 0 through 11 Direct block
12 through (11 + 1024 = 1035) Single-indirect block 12 through (11 + 1024 = 1035) Single-indirect block
1036 through (1035+1024*1024 | Double-indirect blocks 1036 through (1035+1024*1024 | Double-indirect blocks
=1049611) =1049611)
Address = 1048576 ==> block number=1048576/4096=256 Address = 1048576 ==> block number=1048576/4096=256
Block number=256 ==> index in the single-indirect block=? Block number=256 ==> index in the single-indirect block=256-12=244
Address = 5242880 ==> block number=5242880/4096=1280
Block number=1280 ==> double-indirect block number=?
21 22

THE UNIVERSITY OF
NEW SOUTH WALES

THE UNIVERSITY OF
NEW SOUTH WALES
=l

Solution Solution
block # location block # location
0 through 11 Direct block 0 through 11 Direct block

12 through (11 + 1024 = 1035)

Single-indirect block

1036 through (1035+1024*1024
=1049611)

Double-indirect blocks

Address = 1048576 ==> block number=1048576/4096=256

12 through (11 + 1024 = 1035)

Single-indirect block

1036 through (1035+1024*1024
=1049611)

Double-indirect blocks

Address = 1048576 ==> block number=1048576/4096=256

Block number=256 ==> index in the single-indirect block=256-12=244 Block number=256 ==> index in the single-indirect block=256-12=244

Address = 5242880 ==> block number=5242880/4096=1280 Address = 5242880 ==> block number=5242880/4096=1280

Block number=1280 ==> double-indirect block number=(1280-1036)/1024=244/1024=0 Block number=1280 ==> double-indirect block number=(1280-1036)/1024=244/1024=0

Index in the double indirect block=? Index in the double indirect block=244

THE UNIVERSITY OF 23 THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
L Lo

24

Some Best and Worst Case
Access Patterns

Assume Inode already in memory

* Toread 1 byte
— Best:
* 1 access via direct block
— Worst:
* 4 accesses via the triple indirect block

e To write 1 byte
— Best:
* 1 write via direct block (with no previous content)
— Worst:

* 4 reads (to get previous contents of block via triple indirect) + 1 write
(to write modified block back)

THE UNIVERSITY OF 25
NEW SOUTH WALES

Inode Summary

* The inode contains the on disk data associated with a
file
— Contains mode, owner, and other bookkeeping
— Efficient random and sequential access via indexed allocation
Small files (the majority of files) require only a single access
— Larger files require progressively more disk accesses for
random access
« Sequential access is still efficient
— Can support really large files via increasing levels of indirection

THE UNIVERSITY OF 27
NEW SOUTH WALES

Some problems with s5fs

* Inodes at start of disk; data blocks end

— Long seek times
« Must read inode before reading data blocks

* Only one superblock
— Corrupt the superblock and entire file system is lost
* Block allocation was suboptimal

— Consecutive free block list created at FS format time

« Allocation and de-allocation eventually randomises the list
resulting the random allocation

* Inodes also allocated randomly
— Directory listing resulted in random inode access patterns

THE UNIVERSITY OF 29
NEW SOUTH WALES
-

Worst Case Access Patterns with
Unallocated Indirect Blocks

* Worst to write 1 byte
— 4 writes (3 indirect blocks; 1 data)
— 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data)

— 2reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1;
write 1 data)

— 3reads, 2 writes (read 2, read-write 1; write 1 data)
* Worst to read 1 byte
— If reading writes a zero-filled block on disk
* Worst case is same as write 1 byte

— If not, worst-case depends on how deep is the current indirect
block tree.

THE UNIVERSITY OF 26
NEW SOUTH WALES
Rl

Where/How are Inodes Stored

Boot | Super
Block | Block - DTS

» System V Disk Layout (s5fs)
— Boot Block
« contain code to bootstrap the OS
— Super Block
« Contains attributes of the file system itself

— e.g. size, number of inodes, start block of inode array, start of data
block area, free inode list, free data block list

— Inode Array
— Data blocks

THE UNIVERSITY OF 28
NEW SOUTH WALES
Rl

Berkeley Fast Filesystem (FFS)
* Historically followed s5fs

— Addressed many limitations with s5fs
— ext2fs mostly similar

THE UNIVERSITY OF 30
NEW SOUTH WALES
]

Layout of an Ext2 FS

Boot |Block Group Block Group
Block 0 n
* Partition:

— Reserved boot block,
— Collection of equally sized block groups
— All block groups have the same structure

THE UNIVERSITY OF 31
NEW SOUTH WALES
e

Superblocks

Size of the file system, block size and similar
parameters

* QOverall free inode and block counters

« Data indicating whether file system check is
needed:
— Uncleanly unmounted
— Inconsistency
— Certain number of mounts since last check
— Certain time expired since last check

* Replicated to provide redundancy to aid
recoverability

THE UNIVERSITY OF 33
NEW SOUTH WALES
e

Performance considerations

* EXT2 optimisations
— Block groups cluster related inodes and data blocks

— Read-ahead for directories
* For directory searching

— Pre-allocation of blocks on write (up to 8 blocks)
* 8 bits in bit tables
* Better contiguity when there are concurrent writes

* FFS optimisations
— Aim to store files within a directory in the same group

THE UNIVERSITY OF 35
NEW SOUTH WALES
=1

Layout of a Block Group

(o Rt Inode Inode

Descrip- | Block . Data blocks
tors Bitmap Bitmap | Table

Super
Block

1 blk n blks 1 blk 1 blk mblks k& blks

* Replicated super block
— For e2fsck

* Group descriptors
* Bitmaps identify used inodes/blocks
* All block groups have the same number of data blocks

* Advantages of this structure:
— Replication simplifies recovery
— Proximity of inode tables and data blocks (reduces seek time)

THE UNIVERSITY OF 32
NEW SOUTH WALES
Rl

Group Descriptors

* Location of the bitmaps

* Counter for free blocks and inodes in this
group

* Number of directories in the group

THE UNIVERSITY OF 34
NEW SOUTH WALES
Rl

Thus far...

* Inodes representing files laid out on disk.

* Inodes are referred to by number!!!
—How do users name files? By number?

THE UNIVERSITY OF 36
NEW SOUTH WALES
]

Ext2fs Directories

‘ inode rec_len nameﬁlen‘ type ‘name...‘

» Directories are files of a special type

— Consider it a file of special format, managed by the kernel, that uses
most of the same machinery to implement it
* Inodes, etc...

» Directories translate names to inode numbers
» Directory entries are of variable length

* Entries can be deleted in place
— inode =0
— Add to length of previous entry
— use null terminated strings for names

THE UNIVERSITY OF 37
NEW SOUTH WALES
e

Hard links

7 Inode No
* Note that inodes can 122 NR“ Lf"g’Th
ame Leng
have more than one 100 Name
name 176
— Called a Hard Link 5
— Inode (file) 7 has IaIAIRE)
27000
three names 7
« “f1” = inode 7 12
- “file2” = inode 7 2
) 300
* “f3" =inode 7 0
Y TR, ®
L))

Hard links

C's directory B's directory C's directory B's directory

Owner=C Owner = C Owner =C
Count=1 Count =2 Count=1
(c)

(a) (b)
(a) Situation prior to linking
(b) After the link is created
E y ‘L(c After the original owner removes the file

INVERSITY OF
NEW SOUTH WALES

Ext2fs Directories

7 Inode No

e “f1” = inode 7 12 Rec Length

2 Name Length

¢ “file2” = inode 43 100 Name
* “f3” = inode 85 16

THE UNIVERSITY OF 38
NEW SOUTH WALES
Rl

mode
uid
4 Inode Contents
g_' * We can have many names for the same
atime inode.
ctime * When we delete a file by name, i.e. remove
mtime the directory entry (link), how does the file
size gystem know when to delete the underlying
inode?
block count))
— Keep a reference count in the inode
reference count « Adding a name (directory entry) increments the
direct blocks (12) count
40,58,26,8,12, * Removing a name decrements the count

44,62,30,10,42,3,21

single indirect: 32

double indirect
triple indirect

* If the reference count == 0, then we have no
names for the inode (it is unreachable), we can
delete the inode (underlying file or directory)

THE UNIVERSITY OF 40
NEW SOUTH WALES
Rl

Symbolic links

* A symbolic link is a file that contains a
reference to another file or directory

— Has its own inode and data block, which
contains a path to the target file

— Marked by a special file attribute
— Transparent for some operations
— Can point across FS boundaries

THE UNIVERSITY OF 42
NEW SOUTH WALES
]

Ext2fs Directories Ext2fs Directories

7 Inode No 7 Inode No
* Deleting a filename 2 Rec Length * Deleting a filename S2 Rec Length
y 2 Name Length . 2 Name Length
— rm file2 ‘100 Name — rm file2 ‘100 Name
176 * Adjust the record
5 length to skip to next
7T e valid entry
27000
7 7
12 12
2 2
‘300 300
0 0
@ THE UNIVERSITY OF 43 @ THE UNIVERSITY OF 44
NEW SOUTH WALES NEW SOUTH WALES
L]

FS reliability

* Disk writes are buffered in RAM
— OS crash or power outage ==> lost data

— Commit writes to disk periodically (e.g., every
30 sec)

— Use the sync command to force a FS flush
* FS operations are non-atomic

— Incomplete transaction can leave the FS in an
inconsistent state

THE UNIVERSITY OF 45
NEW SOUTH WALES

FS reliability

dir entries i-nodes data blocks

* Example: deleting a file

1.Remove the directory entry--> crash
2.
3.

The i-node and data blocks are lost

THE UNIVERSITY OF 47
NEW SOUTH WALES
=1

FS reliability

dir entries i-nodes data blocks

* Example: deleting a file
1.Remove the directory entry
2.Mark the i-node as free
3.Mark disk blocks as free

THE UNIVERSITY OF 46
NEW SOUTH WALES
Rl

FS reliability

dir entries i-nodes data blocks

-

* Example: deleting a file
1.Mark the i-node as free --> crash
2.
3.

The dir entry points to the wrong file

THE UNIVERSITY OF 48
NEW SOUTH WALES
]

Wi

FS reliability

i-nodes data blocks

—72.
-

* Example: deleting a file
1.Mark disk blocks as free --> crash
2.
3.

The file randomly shares disk blocks with other files

THE UNIVERSITY OF 49
NEW SOUTH WALES

dir entries

FS reliability

+ e2fsck
— Scans the disk after an unclean shutdown and
attempts to restore FS invariants
» Journaling file systems
— Keep a journal of FS updates
— Before performing an atomic update sequence,
write it to the journal

— Replay the last journal entries upon an unclean
shutdown

— Example: ext3fs

THE UNIVERSITY OF 50
NEW SOUTH WALES
Rl

