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Page Faults

» Referencing an invalid page triggers a page fault
« An exception handled by the OS
» Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
« Getan empty frame
+ Load page from disk
« Update page (translation) table (enter frame #, set valid bit, etc.)
« Restart the faulting instruction
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* Note: Some implementations store disk
block numbers of non-resident pages in
the page table (with valid bit Unset)

THE UNIVERSITY OF 9
NEW SOUTH WALES
Lt

Shared Pages

* Shared code

— Single copy of code
shared between all

« Private code and data

— Each process has own
copy of code and data

— Code and data can
appear anywhere in
the address space modifying

— Code must appear at
same address in all
processes
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processes executing it
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Page Table Structure

» Page table is (logically) an array of
frame numbers
—Index by page number

» Each page-table entry (PTE) also has
other bits

Caching
disabled
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Page frame number
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PTE bits
* Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
* Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
* Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
» Caching bit
— Use to indicate processor should bypass the cache when
accessing memory
« Example: to access device registers or memory

THE UNIVERSITY OF 13
NEW SOUTH WALES

|0

Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number
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Figure 8.3 Address Translation in a Paging System

Page tables (recap)
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Page Tables

* Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
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Page Tables

» Assume we have
— 64-bit virtual address (humungous address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
« Main memory?

Page Tables

» Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— e.g.,0.1-1MB text, 0.1 — 10 MB data, 0.1 MB stack

* We need a compact representation that does not waste
space
— Butis still very fast to search

» Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)
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Alternative: Inverted Page Table

PID VPN offset

I

—

Index| PID | VPN ctrl | next
Hash Anchor Table 0
(HAT) 1
mash 2 =
3
4
5 P
6

IPT: entry for each physical frame
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Alternative: Inverted Page Table

PID VPN offset

0 06 04123
—
Index| PID | VPN ctrl | next
Hash Anchor Table 0
(HAT) 1
mash =1 | OxIA 0x40C
0x40C[_ 0 | 0x5 0x0 [
0x40D
2
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Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).
» Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry
— If match, use the index value as frame # for

translation
— If no match, get next candidate IPT entry from chain
field
— If NULL chain entry = page fault
A L »
Lo

Properties of IPTs

« IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

« Saves a vast amount of space (especially on 64-bit
systems)

* Used in some IBM and HP workstations
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Given n processes

* how many page tables will the system
have for
—‘normal’ page tables
—inverted page tables?
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Another look at sharing...
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Proc 1 Address Address

Two (or more)
processes
running the

same program
and sharing

the text section

Page Page
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VM Implementation Issue

* Problem:
— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=Intolerable performance impact!!
» Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)
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|| TLB operation

device!!!

» Secondary
Virtual Address Main Memory Memory

Page # | Offset

Translation
Lookaside Buffer

=
=

Data
structure
Page/Table

in main
memory

|

Frame # Offset

Real Address N

TLB hit

TLB miss

Page fault
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Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

* If matching PTE found (TLB hit), the address is
translated

» Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception
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TLB properties

» Page table is (logically) an array of frame
numbers
» TLB holds a (recently used) subset of PT entries
— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W
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TLB properties

* TLB may or may not be under direct OS control
— Hardware-loaded TLB
« On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM
— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS, Itanium (optionally)
* TLB size: typically 64-128 entries

* Can have separate TLBs for instruction fetch
and data access

* TLBs can also be used with inverted page tables
(and others)
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TLB and context switching

» TLB is a shared piece of hardware

* Normal page tables are per-process (address space)
» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate all
entries)
« high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB
« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits
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Recap - Simplified Components of
TLB effect VM Svst
Virtual Address Spaces yS err!’ageTables for3
. (3 processes) / processes Frame Table
» Without TLB — /
— Average number of physical memory N 'IHH ~
references per virtual reference *:zo«@“\
=2 CPU
+ With TLB (assume 99% hit ratio) 2| 13 e
— Average number of physical memory Frame Pool
references per virtual reference
=.99*1+0.01*2
=1.01 L
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R3000 Add OXFFFFFFFF
MIPS R3000 TLB Soace L rests (seq2
31 12 1 65 0 pace ayOU 0xC0000000
VPN ASID 0 » kuseg:
[ \ | | - 2 gigabytes 0xA0000000
EntryHi Register (TLB key fields) — TLB translated (mapped)
— Cacheable (depending on ‘N’ bit) kseg0
3 12 1 10 9 8 7 0 — user-mode and kernel mode 0x80000000
‘ PFN | N | D | [ | G | 0 accessible
Entrylo Register (TLB data fields) — Page size is 4K
* N = Not cacheable » V=valid bit
+ D =Dirty = Write protect = 64 TLB entries K
. « Accessed via software through useg
G = Global (ignore ASID Cooprocessor 0 registers
in lookup) — EntryHi and EntryLo
A L “ A L
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R3000 Address
Space Layout

— Switching processes
switches the translation

OXFFFFFFFF

0xC000000

0xA0000000

R3000 Address
Space Layout

* ksegO:
— 512 megabytes
— Fixed translation window to
physical memory
« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox 1fffffff physical

* TLB not used

— Cacheable

— Only kernel-mode accessible

— Usually where the kernel code is
placed

Physical Memory

(page table) for kuseg
0x80000000
Proc 1 Proc 2 Proc 3
kuseg kuseg kuseg
0x00000000
(233333333

R3000 Address
Space Layout

* kseg1:
— 512 megabytes
— Fixed translation window to
physical memory
+ 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical
« TLB notused
— NOT cacheable
— Only kernel-mode accessible
— Where devices are accessed (and
boot ROM)

0xC0000000

0x80000000
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Physical Memory

0x00000000

THE UNIVERSITY OF
NEW SOUTH WALES

OXEEEEEEEE

0xC0000000

0xA0000000

0x80000000

kuseg

0x00000000
OxEEEEEEEE
R3000 Address
Space Layout  s.cos0on
* kseg2:
— 1024 megabytes 0xA0000000
— TLB translated (mapped)
— Cacheable
« Depending on the ‘N’-bit 0x80000000
— Only kernel-mode accessible
— Can be used to store the virtual
linear array page table
kuseg
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