Virtual Memory

Memory Management Unit

The CPU sends virtual
addresses to the MMU

CPU
package
CPU
Memory M Disk
o management emory controller
unit
AN [l Bus

The MMU sends physical
addresses to the memory

The position and function of the MMU

R e 1 RS 2
a— L
e Paain Vinual Address - Typical Address
Ing 14 Space Layout
Kernel

* Virtual Memory
— Divided into equal-

+ Physical Memory

Stack region is at top,
and can grow down

P

- B
12|
11
-.

sized pages — Divided into Stack
— A mapping is a equal-sized Heap has free space to
translation between frames Shared ’/ 9 grow up
. ﬁpage and a frame Libraries z - Textis typically read-only
« Apage and null e
— Mappings defined at 7 BSS na * Kernelis in a reserved,
runtime 6 (heap) | 6 | protected, shared region
« They can change 5 5 . O .
— Address space can 4 Data "\ Sstgdp?’vg:ygyplca”y not
have holes ' :
— Process does not 3
have to be 2 Text
Cg”‘s'igcl;?ﬁe';or 1 Physical Address ’/
P Y 0 Space ’ ® s R 4
] LS
Virtual Address Programmer’s perspective: Proc 1Address Proc 2 Address
Space logically present Space 8] 15| Space
14|\ | System’s perspective: Not Currently L g . 14|
Il || mapped, data on disk running ~~—__ 13, | 13|
1 |t ==
* A process may b2 | Physical /[12
be on|y part|a||y : 1 \I Address Spade E
resident : 10 5
— Allows OS to | 9 14 12
store individual . 8|
pages on disk ! Ea 3
— Saves memory ! 6 15 1
for infrequently \ — Disk
used data & code ' %
* What happens if Memory ! e
Access | 13
we access non- 2
. 1 —
resident " Physical Address ! 1]
memory? Space : MR e 0 g
S

Lo

Page Faults

» Referencing an invalid page triggers a page fault
« An exception handled by the OS
» Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
« Getan empty frame
+ Load page from disk
« Update page (translation) table (enter frame #, set valid bit, etc.)
« Restart the faulting instruction

THE UNIVERSITY OF 7
NEW SOUTH WALES
Lt

Virtual Address

Space (6]
Page
Table g7
» Page table for]
resident part of]
address space |
3
1
Physical [7]
Address Space | ®

* Note: Some implementations store disk
block numbers of non-resident pages in
the page table (with valid bit Unset)

THE UNIVERSITY OF 9
NEW SOUTH WALES
Lt

Shared Pages

* Shared code

— Single copy of code
shared between all

« Private code and data

— Each process has own
copy of code and data

— Code and data can
appear anywhere in
the address space modifying

— Code must appear at
same address in all
processes

THE UNIVERSITY OF 10
NEW SOUTH WALES
Lt

processes executing it
— Code must not be self

Proc 1 Address Proc 2 Address
: Space E E Space
| 4] 14|
0 [13] 13
12 Physical 12
] Address Spage [
. 1]
| 110]
| 19|
| 18|
—— Two (or more) L
| processes 16|
|| running the | 5 |
same program 4
T and sharing ?
7 the text section
2] Page Page
ﬁ t Table Table
|

LS LT [o]]

Page Table Structure

» Page table is (logically) an array of
frame numbers
—Index by page number

» Each page-table entry (PTE) also has
other bits

Caching
disabled

VR

Modified Present/absent

Page frame number

A
Referenced Protection

Page
Table 12

THE UNIVERSITY OF
NEW SOUTH WALES
L

PTE bits
* Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
* Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
* Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
» Caching bit
— Use to indicate processor should bypass the cache when
accessing memory
« Example: to access device registers or memory

THE UNIVERSITY OF 13
NEW SOUTH WALES

|0

Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

THE UNIVERSITY OF 14
NEW SOUTH WALES
Lt

Virtual Address

paee# o |

Reglster

Page Table

Page
Frame

[Frame #

_/-\

Paging Mechanism Main Memory

Figure 8.3 Address Translation in a Paging System

Page tables (recap)

THE UNIVERSITY OF
NEW SOUTH WALES
Lt

virtual memory

virtual and physical mem chopped up in pages

e [elEPLLT we

* programs use virtual am—
addresses . e
u

« virtual to physical mapping s
by MMU 2

-first check if page present ;
(present/absent bit)

-if yes: address in page table form
MSBs in physical address

-if no: bring in the page from disk

““““““%g

(

8
7
6
5
4
—3
2
1
0

[DEEEERARER B

THE UNIVERSITY OF | it
NEW SOUTH WALES |
L

[oTleeloele [PlefeeleePT e e 25
1 | 12-bit offset. |
I

it il ‘

Page Tables

* Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?

THE UNIVERSITY OF 18
NEW SOUTH WALES
L

Page Tables

» Assume we have
— 64-bit virtual address (humungous address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
« Main memory?

Page Tables

» Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— e.g.,0.1-1MB text, 0.1 — 10 MB data, 0.1 MB stack

* We need a compact representation that does not waste
space
— Butis still very fast to search

» Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

m THE UNIVERSITY OF 19 m THE UNIVERSITY OF 20
NEW SOUTH WALES NEW SOUTH WALES
Lo Lo
page tables
Two-level Page
I | e
> | table fo R
Table b Lt/
o 20d _jevel = " ﬂ
page tables sy M
representing 1023 U
unmapped A I,
pages are not B"s,%l;—leﬁ‘ A 1 ///—/j
allocated - s E b]
— Nullin the 0 I
top-level
page table
1023 pL’/S
: ke [X
: I
H I pages
1 I
m THE UNIVERSITY OF o = m THE UNIVERSITY OF 22
NEW SOUTH WALES NEW SOUTH WALES
Lo Lo
[,,43‘7(0*’"” /'L“";‘ lo[_} chfffFFF F
. 0 o
Two-level Translation CEAE I:’;_]
1]
. ' i
10 bits [10bits | 12 bits : Frame # Offset '
' o a—B

Gl page
table pir

Page
Fram

_/\

Program Paging Mechanism

.Mi

Main Memory

THE UNIVERSITY OF 24
NEW SOUTH WALES
L

Alternative: Inverted Page Table

PID VPN offset

I

—

Index| PID | VPN ctrl | next
Hash Anchor Table 0
(HAT) 1
mash 2 =
3
4
5 P
6

IPT: entry for each physical frame

THE UNIVERSITY OF
NEW SOUTH WALES
Lt

Alternative: Inverted Page Table

PID VPN offset

0 06 04123
—
Index| PID | VPN ctrl | next
Hash Anchor Table 0
(HAT) 1
mash =1 | OxIA 0x40C
0x40C[_ 0 | 0x5 0x0 [
0x40D
2
\ ppn offset
0x40C | 0x123

THE UNIVERSITY OF
NEW SOUTH WALES
Lt

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).
» Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry
— If match, use the index value as frame # for

translation
— If no match, get next candidate IPT entry from chain
field
— If NULL chain entry = page fault
A L »
Lo

Properties of IPTs

« IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

« Saves a vast amount of space (especially on 64-bit
systems)

* Used in some IBM and HP workstations

THE UNIVERSITY OF 29
NEW SOUTH WALES
Lt

Given n processes

* how many page tables will the system
have for
—‘normal’ page tables
—inverted page tables?

THE UNIVERSITY OF
NEW SOUTH WALES
L

Another look at sharing...

| s P pe

1[1 —| 1l [I
J

THE UNIVERSITY OF
NEW SOUTH WALES
L

yz

THE UNIVERSITY OF 32
NEW SOUTH WALES
L

Proc 1 Address Address

Two (or more)
processes
running the

same program
and sharing

the text section

Page Page
.. Table Table 3

kﬁﬂwlﬂlé\ [LTI LRl 1]

VM Implementation Issue

* Problem:
— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=Intolerable performance impact!!
» Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

THE UNIVERSITY OF 34
NEW SOUTH WALES
Lt

|| TLB operation

device!!!

» Secondary
Virtual Address Main Memory Memory

Page # | Offset

Translation
Lookaside Buffer

=
=

Data
structure
Page/Table

in main
memory

|

Frame # Offset

Real Address N

TLB hit

TLB miss

Page fault

|0

Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

* If matching PTE found (TLB hit), the address is
translated

» Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

THE UNIVERSITY OF 36
NEW SOUTH WALES
L

TLB properties

» Page table is (logically) an array of frame
numbers
» TLB holds a (recently used) subset of PT entries
— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W

THE UNIVERSITY O 37
NEW SOUTH WALE
L

TLB properties

* TLB may or may not be under direct OS control
— Hardware-loaded TLB
« On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM
— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS, Itanium (optionally)
* TLB size: typically 64-128 entries

* Can have separate TLBs for instruction fetch
and data access

* TLBs can also be used with inverted page tables
(and others)

THE UNIVERSITY OF 38
NEW SOUTH WALES

===l

TLB and context switching

» TLB is a shared piece of hardware

* Normal page tables are per-process (address space)
» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate all
entries)
« high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB
« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits

THE UNIVERSITY OF 39
NEW SOUTH WALES
Lt

Recap - Simplified Components of
TLB effect VM Svst
Virtual Address Spaces yS err!’ageTables for3
. (3 processes) / processes Frame Table
» Without TLB — /
— Average number of physical memory N 'IHH ~
references per virtual reference *:zo«@“\
=2 CPU
+ With TLB (assume 99% hit ratio) 2| 13 e
— Average number of physical memory Frame Pool
references per virtual reference
=.99*1+0.01*2
=1.01 L
m THE UNIVERSITY OF 40 m THE UNIVERSITY OF Physica Memery 41
NEW SOUTH WALES NEW SOUTH WALES
Lo Lo
R3000 Add OXFFFFFFFF
MIPS R3000 TLB Soace L rests (seq2
31 12 1 65 0 pace ayOU 0xC0000000
VPN ASID 0 » kuseg:
[\ | | - 2 gigabytes 0xA0000000
EntryHi Register (TLB key fields) — TLB translated (mapped)
— Cacheable (depending on ‘N’ bit) kseg0
3 12 1 10 9 8 7 0 — user-mode and kernel mode 0x80000000
‘ PFN | N | D | [| G | 0 accessible
Entrylo Register (TLB data fields) — Page size is 4K
* N = Not cacheable » V=valid bit
+ D =Dirty = Write protect = 64 TLB entries K
. « Accessed via software through useg
G = Global (ignore ASID Cooprocessor 0 registers
in lookup) — EntryHi and EntryLo
A L “ A L
| B8 Newsour | B8 Newsour 0x00000000

R3000 Address
Space Layout

— Switching processes
switches the translation

OXFFFFFFFF

0xC000000

0xA0000000

R3000 Address
Space Layout

* ksegO:
— 512 megabytes
— Fixed translation window to
physical memory
« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox 1fffffff physical

* TLB not used

— Cacheable

— Only kernel-mode accessible

— Usually where the kernel code is
placed

Physical Memory

(page table) for kuseg
0x80000000
Proc 1 Proc 2 Proc 3
kuseg kuseg kuseg
0x00000000
(233333333

R3000 Address
Space Layout

* kseg1:
— 512 megabytes
— Fixed translation window to
physical memory
+ 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical
« TLB notused
— NOT cacheable
— Only kernel-mode accessible
— Where devices are accessed (and
boot ROM)

0xC0000000

0x80000000

THE UNIVERSITY OF
NEW SOUTH WALES

Physical Memory

0x00000000

THE UNIVERSITY OF
NEW SOUTH WALES

OXEEEEEEEE

0xC0000000

0xA0000000

0x80000000

kuseg

0x00000000
OxEEEEEEEE
R3000 Address
Space Layout s.cos0on
* kseg2:
— 1024 megabytes 0xA0000000
— TLB translated (mapped)
— Cacheable
« Depending on the ‘N’-bit 0x80000000
— Only kernel-mode accessible
— Can be used to store the virtual
linear array page table
kuseg
THE UNIVERSITY OF
NEW SOUTH WALES 0%x00000000

