5/27/2010

void vm_bootstrap(void);

/* Allocate/free kernel heap pages (called by
kmalloc/kfree) */

. Memory Management vaddr_t=plloc_kpages(int npages);
. id_free_kpages(vaddr_t addr);
* Address Space Management and TLB Refill

Assignmenté Parts
3

K tndll5<0) kses©
[L[rt ‘)

* How do I figure out how big memory is?

* ram_getsize() will return the current top of
used memory, and the size of physical
memory configured for sys161. See
kern/arch/mips/vm/ram.c to understand the
basic allocator that you need to mostly fesae/
supercede with your own. /

(4 Ky ——
LM - .

?m

1L e © t - @ * Where can | put my frame table

* You frame table should be dynamically sizeable

based on physical memory in the machine. My

suggestion is that you compute somewhere in
Q/(w_ _ t g2 (/ RAM to put it and just use it in that location.
. . ,,) (* Hereis a little code to illustrate what | mean
{ £ (pf - struct frame_table_entry *frame_table;
ran-9y 1["@"/“‘”"\(/ Tocation = top_of_ram - (top_of_ram / 4K * 4)
frame_table = (struct frame_table_entry *) location;

i /& Note that you will have to mark entries the in table
as used for both the table itself, and 0s/161
ot 6\/ allocated to this point in time.

5‘ {wcc

F4

/fC /20#

5/27/2010

* 0S/161 allocated more than a page using
alloc_kpages

* Yes, the sample implementation of execve
does this - you don't need to support it. To
avoid this (and enable you to run more testing
programs), set __ARG_MAX to 4096 in
kern/include/kern/limits.h.

A struct addrspace *as_create(void);

int as_copy(struct addrspace *src,
struct addrspace **ret);
-» void as_activate(struct addrspace *);
4’ void as_destroy(struct addrspace *);
-Fint as_define_region(struct addrspace *as,

vaddr_t vaddr, size_t sz,
int readable,

int writeable,

int executable);

~% int as_prepare_load(struct addrspace *as);
= int as_complete_Toad(struct addrspace *as);
f—?int as_define_stack(struct addrspace *as,

vaddr_t *initstackptr);

/* Fault handling function called by trap code */
int vm_fault(int faulttype, vaddr_t faultaddress);

, VA

[j —
K

L1 Tz

| 72444 (//ﬂ

Al

Frace

* Don't use kprintf style debugging in the TLB
refill routine after TLB write

* kprintf causes a context switch (it blocks)
which flushes the TLB, which potentially ejects
the entry you have just loaded - infinite loop,

—

here we come. | \

* How do | allocate page tables?

* alloc_kpage() returns a single page that
happens to be the correct size for a two-level
page table with 4-byte entries. Note: You need
to use 4 bytes entries to avoid undue
complexity in allocation, EntryLo and pointers
happen to be 4 bytes in size.

5/27/2010

* How can my my allocator work before and after
it is intialised?
* Try something along the lines of:

struct frame_table_entry *ft = 0;
alloc_kpages()
{
if (ft == 0) {
/* use ram_stealmem */
}
else {
/* use my allocator as frame table is now
initialises */

}

struct Lle { (e (o /2.

uint32_t *L2pagetable; { %

void func(vaddr_t v)

Lo,

uint32_t *L2;
uint32_t pte;

unsigned int vl, v2;
=1

vl = v >> 22; {ﬁ
V2 = v << 10 >> 22;

L2 = L1[vl].L2pagetable;

if (L2 == NuLL) {
panicQ;

}

pte = L2[v2];

