
Anticipatory Disk Scheduling

Sitaram Iyer Peter Druschel

Rice University

Disk schedulers

Reorder available disk requests for

• performance by seek optimization,• performance by seek optimization,

• proportional resource allocation, etc.

Any policy needs multiple outstanding
requests to make good decisions!

With enough requests…

issued by process A issued by process B

E.g., Throughput = 21 MB/s (IBM Deskstar disk)

time

location on disk

With synchronous I/O…

issued by process A issued by process B

forced!

too
late!

E.g., Throughput = 5 MB/s
Next

schedule
forced!

Deceptive idleness

Process A is about to issue next request.

but

Scheduler hastily assumes that process A
has no further requests!

Proportional scheduler

Allocate disk service
in say 1:2 ratio:

Deceptive idleness

causes 1:1 allocation:
BA BA

Next

Prefetch

Overlaps computation with I/O.

Side-effect:
avoids deceptive idleness!avoids deceptive idleness!

• Application-driven

• Kernel-driven

Prefetch

• Application driven – e.g. aio_read()

– Application need to know their future

– Cumbersome programming model– Cumbersome programming model

– Existing apps need re-writing

– May be less efficient than mmap

– aio_read() optional

Prefetch

• Kernel driven

– Less capable of knowing the future

– Access patterns difficult to predict, even – Access patterns difficult to predict, even
with locality

– Cost of misprediction can be high

– Medium files too small to trigger
sequential access detection

Anticipatory scheduling

Key idea: Sometimes wait for process
whose request was last serviced.

Keeps disk idle for short intervals.

But with informed decisions, this:

• Improves throughput

• Achieves desired proportions

Cost-benefit analysis

Balance expected benefits of waiting

against cost of keeping disk idle.

Tradeoffs sensitive to scheduling policy

e.g., 1. seek optimizing scheduler

2. proportional scheduler

Statistics

For each process, measure:

1. Expected median and 95percentile thinktime
N

u
m

b
e
r

o
f

2. Expected positioning time

Median 95percentile

N
u
m

b
e
r

o
f

re
q
u
e
s
ts

Thinktime

last next

Cost-benefit analysis
for seek optimizing scheduler

best := best available request chosen by scheduler

next := expected forthcoming request from

process whose request was last serviced

Benefit =

best.positioning_time — next.positioning_time

Cost = next.median_thinktime

Waiting_duration =

(Benefit > Cost) ? next.95percentile_thinktime : 0

Proportional scheduler

Costs and benefits are different.

e.g., proportional scheduler:

Wait for process whose request was last serviced,

1. if it has received less than its allocation, and

2. if it has thinktime below a threshold (e.g., 3ms)

Waiting_duration = next.95percentile_thinktime

Experiments

• FreeBSD-4.3 patch+ kernel module

(1500 lines of C code)

• 7200 rpm IDE disk (IBM Deskstar)

• Also in the paper:

15000 rpm SCSI disk (Seagate Cheetah)

Microbenchmark

20

25

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Original
Anticipatory

no prefetch prefetch

0

5

10

15

Sequential Alternate Random within file

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

no prefetch

no prefetch

prefetch

prefetch

Real workloads

What’s the impact on real applications
and benchmarks?

Andrew benchmark

Apache web server
(large working set)

Database benchmark

• Disk-intensive

• Prefetching enabled

Andrew filesystem benchmark

20

25

30

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
in

u
te

s
)

Original

5

6

2 (or more) concurrent clients

Lower
is

better

Overall 8% performance improvement

0

5

10

15

20

mkdir cp stat scan gcc

-16% -5% -5% -54% +1.7%

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
in

u
te

s
)

Original

Anticipatory

better

Apache web server

3

4

T
h
ro

u
g
h
p
u
t
(M

B
/s

)• CS.Berkeley trace

• Large working set

0

1

2

read

+29%

mmap

+71%

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

no prefetch

• 48 web clients

90

120

T
h
ro

u
g
h
p
u
t
(t
ra

n
s
a
c
ti
o
n
s
/s

e
c
)

Database benchmark

•MySQL DB

•Two clients

0

30

60

Update

One DB

+2%

Update

Two DBs

+30%

Select

One DB

+5%

Select

Two DBs

+60%

T
h
ro

u
g
h
p
u
t
(t
ra

n
s
a
c
ti
o
n
s
/s

e
c
)

•One or two
databases
on same disk

GnuLD

8

10

12

E
x
e
c
u
ti
o
n
 t
im

e
 (
s
e
c
o
n
d
s
)

Original

Anticipatory

Backup

0

2

4

6

One instance Two instances

E
x
e
c
u
ti
o
n
 t
im

e
 (
s
e
c
o
n
d
s
)

Anticipatory

Concurrent: 68% execution time reduction

Intelligent adversary

15

20

25

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Original

Anticipatory

no prefetch

0

5

10

15

0 1 2 3 4 5 6 8 10 12

Number of reqests issued per cycle

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

20%

Proportional scheduler

20

S
e
rv

ic
e
 r

e
c
e
iv

e
d
 (

s
e
c
o
n
d

s
)

30

60

90

120

T
h
ro

u
g
h

p
u
t
(t

p
s
)

0

10

0 10 20 30

Experimental time (seconds)

S
e
rv

ic
e
 r

e
c
e
iv

e
d
 (

s
e
c
o
n
d

s
)

Original Anticipatory

0T
h
ro

u
g
h

p
u
t
(t

p
s
)

Database benchmark: two databases, select queries

Conclusion

Anticipatory scheduling:

• overcomes deceptive idleness• overcomes deceptive idleness

• achieves significant performance
improvement on real applications

• achieves desired proportions

• and is easy to implement!

Anticipatory Disk SchedulingAnticipatory Disk Scheduling

Sitaram Iyer Peter Druschel

http://www.cs.rice.edu/~ssiyer/r/antsched/

