I/O Management
Intro

Chapter 5

THE UNIVERSITY OF 1
NEW SOUTH WALLS

s

I/0O Devices

* There exists a large variety of I/O devices:
— Many of them with different properties
— They seem to require different interfaces to
manipulate and manage them
* We don’'t want a new interface for every device
 Diverse, but similar interfaces leads to code
duplication
+ Challenge:
— Uniform and efficient approach to 1/O

THE UNIVERSITY OF 2
NEW SOUTIT WALTS
—

Categories of /0O Devices (by usage)

* Human interface

— Used to communicate with the user

— Printers, Video Display, Keyboard, Mouse
* Machine interface

— Used to communicate with electronic equipment

— Disk and tape drives, Sensors, Controllers, Actuators
* Communication

— Used to communicate with remote devices

— Ethernet, Modems, Wireless

THE UNIVERSITY OF 3
NEW SOUTIT WALTS
—

I/O Device Handling

» Data rate

— May be differences of several orders of
magnitude between the data transfer rates

— Example: Assume 1000 cycles/byte I/O
» Keyboard needs 10 KHz processor to keep up
* Gigabit Ethernet needs 100 GHz processor.....

THE UNIVERSITY OF 4
NEW SOUTIT WALTS
—

THE UNIVERSITY OF 5
NEW SOUTH WALES

Device Data rate
Keyboard 10 bytesisec
Mouse 100 bytesisec
56K modem 7 KBlsec
Telephone channel 8 KB/sec
Dual ISDN lines 16 KB/sec
Laser printer 100 KB/sec
Scanner 400 KB/sec
Classic Ethernet 1.25 MBisec
USB (Universal Serial Bus 1.5 MBisec
Digital camcorder 4 MBJsec
IDE disk 5 MBisec
40x CD-ROM 6 MBisec
Fast Ethernet 125 MB/sec
1SA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec
FireWire (IEEE 1394) 50 MB/sec
XGA Moritor 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MBisec
Ultrium tape 320 MBJsec
PCI bus 528 MBJsec
Sun Gigaplane XB backplane 20 GB/sec

-@ THE UNIVERSITY OF
NEW SOUTH WALES

I/0 Device Handling Considerations

Complexity of control

Unit of transfer

— Data may be transferred as a stream of bytes for a
terminal or in larger blocks for a disk

Data representation
— Encoding schemes
Error conditions

— Devices respond to errors differently
* 1p0: printer on fire!
— Expected error rate also differs

THE UNIVERSITY OF 7
NEW SOUTH WALLS

I/0O Device Handling Considerations
» Layering
—Need to be both general and specific, e.g.
— Devices that are the same, but aren’t the
same
» Hard-disk, USB disk, RAM disk
— Interaction of layers
» Swap partition and data on same disk
* Two mice
— Priority
» Keyboard, disk, network

THE UNIVERSITY OF 8
NEW SOUTH WALLS

LS

Accessing I/0O Controllers

Two address One address space Two address spaces
OXFFFF.. W Memory
/0 ports
o [1

(@ (b) ©
a) Separate /0 and memory space
— 1/ controller registers appear as I/O ports
— Accessed with special I/O instructions
b) Memory-mapped I/O
— Controller registers appear as memory
— Use normal load/store instructions to access
c) Hybrid
— x86 has both ports and memory mapped /O
— Linux Device Drivers; Jonathan Corbet, Alessandro Rubini,

and Greg Kroah-Hartman

THE UNIVERSITY OF 9
NEW SOUTH WALLS

Bus Architectures

CPU reads and writes of memory
go over this high-bandwidth bus

o] cPU Memory [l{e]

Ix
This memory port is

Bus 1o allow /O devices
access to memory

[Memory

All addresses (memory
and 1/0) go here

(@) (b)
(a) A single-bus architecture
(b) A dual-bus memory architecture

THE UNIVERSITY OF 10
NEW SOUTH WALES

Intel IXP420

Ethernet
NPE A

Mo

Ethernet MAC

Wi

Ethernet
NPE B

Ethernet MAC

Intel XScale® Core
266/400/533 MHz
32KB Data Cache

32 KB Instruction Cache.
2KB Mini-Data Cache

THEE UNIVERSITY OF "
NEW SOUTH WALTS

Interrupts
Interrupt 1. Device is finished
EPU 3. CPU acks controller
interrupt Bisic
B = Keyboard

— 4—‘Clock
2. Controller m—| <
1N lssuas , Printer
[kt 7] .

 Devices connected to an Interrupt Controller via
lines on an 1/0 bus (e.g. PCI)

* Interrupt Controller signals interrupt to CPU and
is eventually acknowledged.

» Exact details are architecture specific.

THE UNIVERSITY OF 12
NEW SOUTH WALTS

=

Issue Read

command to PU — 1O
1O module

Programmed 1/O

Read status
of 110 II/D —CPU

* Also called polling, or busy
waiting

* 1/0 module (controller) performs
the action, not the processor

» Sets appropriate bits in the I/O
status register

No interrupts occur

» Processor checks status until
operation is complete
— Wastes CPU cycles

Error
condition

from O

/O — CPU
Module

.

Write word
PU — memor
inio memory

THE UNIVERSITY OF
NEW SOUTH WALES Next instruction
L)

Interrupt-Driven 1/0O

Toste Read jCPU — 1O
command to Do somethin,
10 module_f| ™ Felse

» Processor is interrupted when 1/0
module (controller) ready to
exchange data

* Processor is free to do other work

* No needless waiting

» Consumes a lot of processor time A
because every word read or
written passes through the
processor

THE UNIVERSITY OF
NEW SOUTH WALES

Read status . _ - — 1pjermupt

/O — CPU

Error

condition

/O — CPU

PU — memory

Next instruction

(b) Interrupt-<riven VO

B LO

LS

Direct Memory Access

» Transfers a block of data

. P CPU — DMA
directly to or from memory | st T omeinng
o0 module W7~ Talse
m

* Aninterrupt is sent when
the task is complete Read status
of DMA
* The processor is only L

involved at the beginning
and end of the transfer

=== [nterrupt

DMA — CPU

Next instruction

(c) Direct memory access

DMA Considerations

v Reduces number of interrupts
— Less (expensive) context switches or kernel entry-exits
% Requires contiguous regions
— Copying
— Scatter-gather
* Synchronous/Asynchronous
» Shared bus must be arbitrated
— CPU cache reduces (but not eliminates) CPU need for bus

CPU Memory Device

| It I

THEE UNIVERSITY OF 15
NEW SOUTH WALES
s

THEE UNIVERSITY OF 16
NEW SOUTH WALES
LS

The Process to Perform DMA
Transfer

1. device driver is told to
transfer disk data to

buffer at address X CPU
. DMA controller transfers 2. device driver el disk
bytes to buffer X, controller to transfer C
increasing memory bytes from disk to buffer
address and decreasing at address X
CuntilC=0
. when C = 0, DMA DMA/bus/interrupt | x
interrupts CPU to signal controller >_ CRUmemopbus, memory - | buffer
transfer completion
; . : PCI bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA

I I controller
THEE UNIVERSITY OF 17
NEW SOUTH WALES

s

IDE disk controller

Evolution of the 1/0 Function

» Processor directly controls a peripheral
device

— Example: CPU controls a flip-flop to
implement a serial line

Serial
Line

THE UNIVERSITY OF 18
NEW SOUTH WALES

Evolution of the 1/0 Function

« Controller or /O module is added
— Processor uses programmed 1/O without interrupts
— Processor does not need to handle details of external devices
— Example: A Universal Asynchronous Receiver Transmitter
« CPU simply reads and writes bytes to I/O controller
« 1/O controller responsible for managing the signaling

Serial
Line

Evolution of the 1/0 Function

+ Controller or /0O module with interrupts

— Processor does not spend time waiting for an
1/0 operation to be performed

Interrupt
Line

Serial
Line

20

THE UNIVERSITY OF
NEW SOUTH WALFS
—

THE UNIVERSITY OF
NEW SOUTH WALFS
—

Evolution of the 1/0 Function

+ Direct Memory Access
— Blocks of data are moved into memory
without involving the processor
— Processor involved at beginning and end only

Interrupt
Line

21

THE UNIVERSITY OF
NEW SOUTH WALFS
—

Evolution of the 1/0O Function

* 1/O processor
— 1/0 module has its own local memory, internal bus, etc.

— Its a computer in its own right
— Example: Myrinet 10 gigabit NIC

Interrupt
Line
Myrinet
Controller

23

THE UNIVIRSITY OF
NEW SOUTH WALFS
—

Evolution of the 1/0O Function

* 1/0 module has a separate processor

— Example: SCSI controller
+ Controller CPU executes SCSI program code out
of main memory

Interrupt
Line CPU
SCsI
Controller

SCsI
Cable

Bus

THE UNIVERSITY OF
NEW SOUTH WALFS
—

22

