
Scheduling Bits & Pieces

1

Windows Scheduling

2

Windows Scheduling

• Priority Boost when unblocking

– Actual boost dependent on resource

• Disk (1), serial (2), keyboard (6), soundcard (8)%..

• Interactive, window event, semaphore (1 or 2)• Interactive, window event, semaphore (1 or 2)

– Boost decrements if quantum expires

• Anti-starvation hack

– If a ready process does not run for long time,

it gets 2 quanta at priority 15

3

Priority Inheritance

4

Batch Algorithms

– Maximise throughput

• Throughput is measured in jobs per hour (or similar)

– Minimise turn-around time

• Turn-around time (Tr)

– difference between time of completion and time of submission

5

– difference between time of completion and time of submission

– Or waiting time (Tw) + execution time (Te)

– Maximise CPU utilisation

• Keep the CPU busy

• Not as good a metric as overall throughput

First-Come First-Served (FCFS)

• Algorithm

– Each job is placed in single queue, the first

job in the queue is selected, and allowed to

run as long as it wants.

6

run as long as it wants.

– If the job blocks, the next job in the queue is

selected to run

– When a blocked jobs becomes ready, it is

placed at the end of the queue

Example

• 5 Jobs

– Job 1 arrives slightly

before job 2, etc%

– All are immediately

runnable

J1

J2

J3

7

runnable

– Execution times

indicated by scale on

x-axis

0 2 4 106 8 12 14 201816

J3

J4

J5

FCFS Schedule

J1

J2

J3

8

0 2 4 106 8 12 14 201816

J3

J4

J5

FCFS
• Pros

– Simple and easy to implement

• Cons
– I/O-bound jobs wait for CPU-bound jobs

⇒Favours CPU-bound processes
• Example:

9

• Example:

– Assume 1 CPU-bound process that computes for 1 second and
blocks on a disk request. It arrives first.

– Assume an I/O bound process that simply issues a 1000
blocking disk requests (very little CPU time)

– FCFS, the I/O bound process can only issue a disk request per
second

» the I/O bound process take 1000 seconds to finish

– Another scheme, that preempts the CPU-bound process when
I/O-bound process are ready, could allow I/O-bound process to
finish in 1000* average disk access time.

Shortest Job First

• If we know (or can estimate) the execution

time a priori, we choose the shortest job

first.

• Another non-preemptive policy

10

• Another non-preemptive policy

Our Previous Example

• 5 Jobs

– Job 1 arrives slightly

before job 2, etc%

– All are immediately

runnable

J1

J2

J3

11

runnable

– Execution times

indicated by scale on

x-axis

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Job First

J1

J2

J3

12

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Job First

• Con
– May starve long jobs

– Needs to predict job length

• Pro
– Minimises average turnaround time (if, and only if, all

13

– Minimises average turnaround time (if, and only if, all
jobs are available at the beginning)

– Example: Assume for processes with execution times
of a, b, c, d.

• a finishes at time a, b finishes at a + b, c at a + b + c, and so
on

• Average turn-around time is (4a + 3b + 2c + d)/4

• Since a contributes most to average turn-around time, it
should be the shortest job.

Shortest Remaining Time First

• A preemptive version of shortest job first

• When ever a new jobs arrive, choose the

one with the shortest remaining time first

– New short jobs get good service

14

– New short jobs get good service

Example

• 5 Jobs

– Release and execution

times as shown

J1

J2

J3

15

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Remaining Time First

J1

J2

J3

16

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Remaining Time First

J1

J2

J3

17

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Remaining Time First

J1

J2

J3

18

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Remaining Time First

J1

J2

J3

19

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Remaining Time First

J1

J2

J3

20

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Remaining Time First

J1

J2

J3

21

0 2 4 106 8 12 14 201816

J3

J4

J5

Shortest Remaining Time First

J1

J2

J3

22

0 2 4 106 8 12 14 201816

J3

J4

J5

Scheduling in Batch Systems

23

Three level scheduling

Three Level Scheduling

• Admission Scheduler

– Also called long-term scheduler

– Determines when jobs are admitted into the

system for processing

24

system for processing

– Controls degree of multiprogramming

– More processes ⇒ less CPU available per

process

Three Level Scheduling

• CPU scheduler

– Also called short-term scheduler

– Invoked when ever a process blocks or is

released, clock interrupts (if preemptive

25

released, clock interrupts (if preemptive

scheduling), I/O interrupts.

– Usually, this scheduler is what we are

referring to if we talk about a scheduler.

Three Level Scheduling

• Memory Scheduler

– Also called medium-term scheduler

– Adjusts the degree of multiprogramming via

suspending processes and swapping them

26

suspending processes and swapping them

out

Some Issues with Priorities

• Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).

• Adaption is:
– usually ad-hoc,

27

– usually ad-hoc,
• hence behaviour not thoroughly understood, and

unpredictable

– Gradual, hence unresponsive

• Difficult to guarantee a desired share of the CPU

• No way for applications to trade CPU time

Lottery Scheduling

• Each process is issued with “lottery

tickets” which represent the right to

use/consume a resource

– Example: CPU time

28

– Example: CPU time

• Access to a resource is via “drawing” a

lottery winner.

– The more tickets a process possesses, the

higher chance the process has of winning.

Lottery Scheduling

• Advantages

– Simple to implement

– Highly responsive
• can reallocate tickets held for immediate effect

29

– Tickets can be traded to implement individual
scheduling policy between co-operating
threads

– Starvation free
• A process holding a ticket will eventually be

scheduled.

Example Lottery Scheduling

• Four process running concurrently

– Process A: 15% CPU

– Process B: 25% CPU

– Process C: 5% CPU

30

– Process C: 5% CPU

– Process D: 55% CPU

• How many tickets should be issued to

each?

Lottery Scheduling Performance

Observed performance of

two processes with

varying ratios of tickets

31

32

Fair-Share Scheduling

• So far we have treated processes as individuals

• Assume two users

– One user has 1 process

– Second user has 9 processes

• The second user gets 90% of the CPU

33

• The second user gets 90% of the CPU

• Some schedulers consider the owner of the process in

determining which process to schedule

– E.g., for the above example we could schedule the first user’s

process 9 times more often than the second user’s processes

• Many possibilities exist to determine a fair schedule

– E.g. Appropriate allocation of tickets in lottery scheduler

