Log Structured File Systems

THE UNIVERSITY OF 1
NEW SOUTH WALLS

Motivating Observations

» Memory size is growing at a rapid rate

= Growing proportion of file system reads
will be satisfied by file system buffer cache

= Writes will increasingly dominate reads

s

THE UNIVERSITY OF 2
NEW SOUTIT WALTS
—

Motivating Observations

» Creation/Modification/Deletion of small files form the majority of a
typical workload
» Workload poorly supported by traditional Inode-based file system
(e.g. BSD FFS, ext2fs)
— Example: create 1k file results in: 2 writes to the file inode, 1 write to
data block, 1 write to directory data block, 1 write to directory inode
= 5 small writes scattered within group
- Synchronous writes (write-through caching) of metadata and
directories make it worse
« Each operation will wait for disk write to complete.
» Write performance of small files dominated by cost of metadata

writes
Group Data
Super Descrip- | Block Ipode Inode Data blocks
Block . Bitmap | Table
tors Bitmap

THE UNIVERSITY OF 3
NEW SOUTIT WALTS
—

Motivating Observations

» Consistency checking required for ungraceful
shutdown due to potential for sequence of
updates to have only partially completed.

 File system consistency checkers are time
consuming for large disks.

» Unsatisfactory boot times where consistency
checking is required.

THE UNIVERSITY OF 4
NEW SOUTIT WALTS
—

Basic Idea!!!

» Buffer sequence of updates in memory
and write all updates sequentially to disk in
one go.

Meta-

Disk

THE UNIVERSITY OF 5
NEW SOUTH WALLS

s

THE UNIVIRSITY OF 6
NEW SOUTIT WALTS
—

Issues

* How do we now find I-nodes that are scattered
around the disk?
= Keep a map of inode locations
- Inode map is also “logged”
— Assumption is I-node map is heavily cached and
rarely results in extra disk accesses
— To find block in the I-node map, use two fixed location
on the disk contains address of block of the inode
map
« Two copies of the inode map addresses so we can recover if
error during updating map.

THE UNIVERSITY OF 7
NEW SOUTIT WALTS
—

(10 (2:59

2 /)¢
T LR 1 o [E k]

THE UNIVERSITY OF 8
NEW SOUTIT WALTS
—

LFS versus FFS

» Comparison of creating two small files

Sprite LFS

THE UNIVERSITY OI 9
NEW SOUTH WALES
L

Issue
Disks are Finite in Size

* File system “cleaner” runs in background
— Recovers blocks that are no longer in use by
consulting current inode map
» |dentifies unreachable blocks
— Compacts remaining blocks on disk to form
contiguous segments for improved write
performance

THEE UNIVERSITY OF 10
NEW SOUTH WALTS
LS

Issue
Recovery

» File system is check-pointed regularly which saves
— A pointer to the current head of the log
— The current Inode Map blocks
« On recovery, simply restart from previous checkpoint.
— Can scan forward in log and recover any updates written after
previous checkpoint
— Write updates to log (no update in place), so previous checkpoint
always consistent

|||||\HHHHHH|||||||\HHHHIIHIN\IIIIIIH— |
Checkpoint

@ THE UNIVERSITY OF Location 1

NEW SOUTH WALLS

s

Reliability

+ Updated data is written to the log, not in
place.

» Reduces chance of corrupting existing
data.
— Old data in log always safe.

— Crashes only affect recent data

» As opposed to updating (and corrupting) the root
directory.

THE UNIVERSITY OF 12
NEW SOUTH WALTS
=

Performance

» Comparison between LFS
and SunOS FS
— Create 10000 1K files

Key: [Sprite LFS

Files/sec (n
180

— Read them (in order) 1602 =
— Delete them :4

* Order of magnitude - N
improvement in & =
performance for small 40
writes % |

Create Read Delete
10000 1K file access

THEE UNIVERSITY OF 13
NEW SOUTH WALTS

s

%

Journaling file systems

» Hybrid of
— |-node based file system
— Log structured file system (journal)
* Many variations
— log only meta-data to journal
— log-all to journal
* Need to write-twice (i.e. copy from journal to i-
node based files)

* Example — ext3

THEE UNIVERSITY OF 15
NEW SOUTH WALTS
s

LS

LFS not a clear winner

When LFS cleaner overhead is ignored, and FFS runs on a new,
unfragmented file system, each file system has regions of performance
dominance.

— LFSis an order of magnitude faster on small file creates and deletes.

— The systems are comparable on creates of large files (one-half megabyte or more).

— The systems are comparable on reads of files less than 64 kilobytes.

— LFSread performance is superior between 64 kilobytes and four megabytes, after which FFS
is comparable.

~ LFS write performance is superior for files of 256 kilobytes or less.

~ FFS write performance is superior for files larger than 256 kilobytes.
Cleaning overhead can degrade LFS performance by more than 34% in a
transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.

Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan

*File System Logging Versus Clustering: A Performance Comparison”

THEE UNIVERSITY OF 14
NEW SOUTH WALTS

