User-level Mutual Exclusion

THE UNIVERSITY OF
NIW SOUTH WALLS

Mutual Exclusion
Overheads

* Locking implemented by:
— interrupt disabling and enabling
* not suitable for user-level
— Hardware primitives (test and set)
+ not always available, not efficiently implemented
— System calls
« high overheads

» Trade-off between granularity of locking and locking
overhead
— Fine granularity
« more potential parallelism
« more locks and thus overhead

az
B T1E UNIVERSITY OF
E NEW SOUTIT WALTS

Can we avoid locking?

* Yes
—in some cases
» Lock-free data structures

— Need hardware help
« compare-and-swap
« exchange
- test_and_set

=
Bl 111 UNIVERSITY OF
NIW SOUTH WALLS

Atomic Compare and Swap

bool compare_swap(addr, val, new)

{
if (*addr == val) {
*addr = new;
return true;
}
return false

}
addr = memory address
val = expected value
new = value to replace
r = success or failure

ESR 1 oswvissiry or

A NOW SOUTITWALS

Example

* Lock-free atomic increment

atomic_inc(int *addr)
{
do {
old = *addr;
new = old + 1;
} while (!compare_and_swap(addr, old, new));

« Lock-free does not preclude starvation
« Tricky to implement more complex structures

THE UNIVERSITY OF
NIW SOUTH WALLS

Lock-free the solution?

» Can avoid locking by using lock-free data
structures
— Still need short atomic sequences
« compare-and-swap,etc,..
 not always provided by hardware
* may be slow to execute
» Observe: Lock-based data structure also
need mutual exclusion to implement the lock
primitive themselves.

az
B T1E UNIVERSITY OF
E NEWSOUTIT WALTS

How do we provide efficient
atomic sequences?

* Interrupt disabling?

+ Syscalls?
* Processor Instructions?

i
NIW SOUTH WALLS

il

11T UNIVIRSITY OF
i

i

The problem

add:

lw ro, (rl)
add ro, ro, 1
sw ro, (rl)

HE UNIVIRSITY OF
NIW SOUTH WALLS

Optimistic Approach

* Assume the critical code runs atomically
— Atomic Sequence

« If an interrupt occurs, OS recovers such that
atomicity is preserved

» Two basic mechanisms

— Rollback
+ Only single memory location update
+ Guarantee progress???

How does the OS know what is
an atomic sequence?

» Designated sequences
— Match well know sequences surrounding PC
» Matching takes time
+ sequence may occur outside an atomic sequences
— Rollback might break code
— Rollforward okay
+ Sequences can be inlined
» No overhead added to each sequence, overhead only on
interruption

— Rollforward
- -
B o SoUn WA TS B o SoUn WA TS
cse

« Static Registration
— All sequences are registered at program
startup
 No direct overhead to sequences themselves

+ Limited number of sequences
— Reasonable to identify on interrupt
— No inlining

=
fEE T1E UNIVIRSITY OF
B Now soUTITWALLS

* Dynamic Registration
— Share a variable between kernel and user-
level, set it while in an atomic sequence
— Can inline, even synthesize sequences at
runtime
— Adds direct overhead to each sequence

=
fEE T1E UNIVIRSITY OF
B Now soUTITWALLS

How to roll forward?

* Problem: How to regain control after Cloning
rolling forward to end of sequence — Two copies of each sequence
» Code re-writing * normal copy

- modified copy that call back into interrupt
handler

+ On interrupt, map PC in normal sequence into

— Re-write instruction after sequence to call
back to interrupt handler

+ Cache issues — need to flush the instruction PC in modified
cache?? . . .
« Mapping can be time consuming
— Inlining???
- Difficulties with PC relative offsets
RS BB s
7cse - CS5€
» Computed Jump Controlled fault
— Every sequence uses a computed jump at — Dummy instruction at end of each
the end sequences

« NOP for normal case
« Fault for interrupt case
— Example is read from (in)accessible page
— Only good for user-kernel privilege
changes

— Still adds an extra instruction

» Normal sequence simply jmp to next instruction
« Interrupted sequence jumps to interrupt handler
+ Adds a jump to every sequence

i) NEW SOUTH WALTS ‘!«,J. NEW SOUTH WALTS
cse cse
Limiting Duration of Roll Implementations - Dynamic Registration
Scheme With Jump
forward destAddr - adessOf henc)
NAS «+ TRUE
° Watchdog {atomic sequence ...}
L . . iAS « FALSE
» Restriction on code so termination can jump destAddr
be inspected for theEnd:
* lda 714, inAs # load address of inAs
* lda rl, theEnd # load addrees of theEnd into rl
* stl zero, (ri) # inAS <- TRUE (0 = TRUE)
lda 13, sharedCounter # load address of sharedCounter
lal r2, (x3) # load value of sharedCounter
addl r2, 1, r2 # increment counter
stl r2, (r3) # store back new value
* 3l rl, (r4) # reset inAS to FALSE (not O = FALSE)
* dmp (rl) # jump to address stored in rl
= R v—— thelind:
= s NEW SOUTH WALLS

Implementations - Dynamic Registration
Scheme With Fault

Implementations — Hybrid registration — a
hint-based approach

destAddr + addressOf (theEnd)
InAS + TRUE

destAddr + addressOf (theEnd) (atomic sequence.. ..)

InAS « TRUE jump destAddr
(atomic sequence . . .) theEnd:
theEnd: IAS « «falseOrFault

* 1lda rl, theEnd # load address of theEnd into rl
lda 13, sharedCounter # load address of sharedCounter
1d1 r2, (r3) # load value of sharedCounter
addl r2, 1, r2 # increment counter
stl 12, (r3) } store back new value

* jmp (rl) # jump to address stored in rl

theEnd:
B i onvesiy o B i unvisiy o
‘!«J. NIW SOUTIT WALTS ‘!«J. NIW SOUTIT WALTS
cse cse

Results Benchmark Legend

DEC Alpim P PARSC L1 » Sigprocmask — syscall based approach

‘lechnique NULL LIFO FIFO | NULL LIFO FIFO . _ . .

sigprocmask 1682 3045 3363 1787 3578 3590 DI dlsable a” InterrUptS

Dyn/Fault 32w #| 12 M2 * CIPL — set interrupt priority level

Dyn/Tump 9 16 13 11 21 27 . .

Hyb/Jump 6 5 6 s s 12 * SPLx — same as CIPL with function call
oL P » PALcode - special Alpha processor call
splx 4 8 88 30 G073 » LL/SC —load link store conditional

PALcode >13 > 13 >13 n'a n/a wa

LL/STC n/a >118 > 118 wa na na

\'E" T Table 1: Overheads of Different Atomicity Schemes in Cycles EE‘- TG UNVIRSITY OF

Interrupt Delay

* Whenever an interrupt occurs, we need to
check for atomic sequence.
— Hyb/Jump
« does r1 point to instruction after a jump
« sequence <= 32 instructions
* no backward jumps/branches
« forward jump/branch targets within sequence

» Cost
— 73+ N * 25 cycles (N is length of sequence)

=
B T UNIVIRSITY OF
B8 NWSOUTITWAITS

