Scheduling Bits & Pieces

Windows Scheduling
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Figure 11-27. Mapping of Win32 priorities to Windows priorities.
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Windows Scheduling
* Priority Boost when unblocking
— Actual boost dependent on resource
* Disk (1), serial (2), keyboard (6), soundcard (8)..... @
* Interactive, window event, semaphore (1 or 2)
— Boost decrements if quantum expires
» Anti-starvation hack
— If a ready process does not run for long time,
it gets 2 quanta at priority 15 @ @ ILI)
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Batch Algorithms

— Maximise throughput
« Throughput is measured in jobs per hour (or similar)
— Minimise turn-around time
* Turn-around time (T,)
— difference between time of completion and time of submission
— Or waiting time (T,) + execution time (T)
— Maximise CPU utilisation
« Keep the CPU busy
« Not as good a metric as overall throughput
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First-Come First-Served (FCFS)

+ Algorithm

— Each job is placed in single queue, the first
job in the queue is selected, and allowed to
run as long as it wants.

— If the job blocks, the next job in the queue is
selected to run

—When a blocked jobs becomes ready, it is
placed at the end of the queue
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Example
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FCFS Schedule
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FCFS
* Pros

— Simple and easy to implement
» Cons
— 1/0-bound jobs wait for CPU-bound jobs

—=Favours CPU-bound processes
« Example:

— Assume 1 CPU-bound process that computes for 1 second and
blocks on a disk request. It arrives first.

— Assume an I/O bound process that simply issues a 1000
blocking disk requests (very little CPU time)

— FCFS, the I/0 bound process can only issue a disk request per
second

» the I/O bound process take 1000 seconds to finish

— Another scheme, that preempts the CPU-bound process when

1/0O-bound process are ready, could allow I/O-bound process to

finish in 1000* average disk access time.
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Shortest Job First

+ If we know (or can estimate) the execution
time a priori, we choose the shortest job
first.

* Another non-preemptive policy
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Shortest Job First

n [(TTTTT]

o L1

BT

iz [T

5 [TTTTT]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 12
NEW SOUTH WALTS




Shortest Job First

» Con
— May starve long jobs
— Needs to predict job length
* Pro
— Minimises average turnaround time (if, and only if, all
jobs are available at the beginning)

— Example: Assume for processes with execution times
ofa, b, c d.

« afinishes at time a, b finishes ata +b, cata +b + ¢, and so
on

« Average turn-around time is (4a + 3b + 2c + d)/4
« Since a contributes most to average turn-around time, it

Shortest Remaining Time First

» A preemptive version of shortest job first

* When ever a new jobs arrive, choose the
one with the shortest remaining time first
— New short jobs get good service

should be the shortest job.
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Example Shortest Remaining Time First
* 5 Jobs
n Djj — Release and execution n Djj
1l D:l:‘ times as shown 1l D:l:‘
5 . 5 .
W IO W IO
s TTTTT] s TTTTT]
0 2 4 6 8 100 12 14 16 18 20 0 2 4 6 8 100 12 14 16 18 20
THE UNIVE st\\yvo\ﬁ 15 THI A\?]\}/’\ st\\yvo\ﬁ 16
-@ NEW SOUTH WAL -@ NEW SOUTH WAL

Shortest Remaining Time First
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Shortest Remaining Time First
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Shortest Remaining Time First

Shortest Remaining Time First
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Scheduling in Batch Systems
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Three Level Scheduling

» Admission Scheduler
— Also called long-term scheduler

— Determines when jobs are admitted into the
system for processing

— Controls degree of multiprogramming

— More processes = less CPU available per
process
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Three Level Scheduling

* CPU scheduler
— Also called short-term scheduler

—Invoked when ever a process blocks or is
released, clock interrupts (if preemptive
scheduling), 1/0O interrupts.

— Usually, this scheduler is what we are
referring to if we talk about a scheduler.
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Three Level Scheduling

* Memory Scheduler
— Also called medium-term scheduler

— Adjusts the degree of multiprogramming via
suspending processes and swapping them
out
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Some Issues with Priorities

» Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).

» Adaption is:

— usually ad-hoc,

« hence behaviour not thoroughly understood, and
unpredictable

— Gradual, hence unresponsive
Difficult to guarantee a desired share of the CPU
* No way for applications to trade CPU time
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Lottery Scheduling

» Each process is issued with “lottery
tickets” which represent the right to
use/consume a resource
— Example: CPU time

» Access to a resource is via “drawing” a
lottery winner.

— The more tickets a process possesses, the
higher chance the process has of winning.
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Lottery Scheduling

» Advantages
— Simple to implement
— Highly responsive
+ can reallocate tickets held for immediate effect

— Tickets can be traded to implement individual
scheduling policy between co-operating
threads

— Starvation free

*» A process holding a ticket will eventually be
scheduled.
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Example Lottery Scheduling

» Four process running concurrently
—Process A: 15% CPU
—Process B: 25% CPU
—Process C: 5% CPU
—Process D: 55% CPU

* How many tickets should be issued to
each?
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Lottery Scheduling Performance
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Figure 4: Relative Rate Accuracy. For each allocated ratio, the Figure 5: Fairness Over Time. Two tasks executing the Dhry-
observed ratio is plotted for each of three 60 second runs. The
ca . P . stone benchmark with a 2: 1 ticket allocation. Averaged over the
gray line indicates the ideal where the two ratios are identical. " .
entire run, the two tasks executed 25378 and 12619 iterations/sec.,

for an actual ratio of 2.01: 1.
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Fair-Share Scheduling Two Level Scheduling

« So far we have treated processes as individuals * Interactive systems Commonly employ
+ Assume two users two-level scheduling

— One user has 1 process
— CPU scheduler and Memory Scheduler

— Second user has 9 processes
+ The second user gets 90% of the CPU * Memory scheduler was covered in VM

+ Some schedulers consider the owner of the process in — We will focus on CPU scheduling
determining which process to schedule

— E.g., for the above example we could schedule the first user’s
process 9 times more often than the second user’s processes

* Many possibilities exist to determine a fair schedule
— E.g. Appropriate allocation of tickets in lottery scheduler
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