Scheduling Bits & Pieces

Windows Scheduling

15 | 15

15 12
KR AN EE L)
13
2 |
|

Time critical
Highest
Above normal

‘ Win32 process class priorﬁlles
J Above Below
Real-time | High | Normal | Normal | Normal ‘ Idle
15|

Win32

thread Normal 24 Bholka' &
priorities | Below normal i J 1 74 J 5 3
Lowest 22 11 glitiz[[zs ve s 1l «a 2
|d|e4T1s<‘711\1!1\14[’
Figure 11-27. Mapping of Win32 priorities to Windows priorities.
THI L’}‘Y" R,\\\WVY OL‘ 1 THI A\}\Y’\ R,\\\WVY OL‘ 2
-@ NEW SOUTH WALI -@ NEW SOUTH WALI
Windows Scheduling
* Priority Boost when unblocking
— Actual boost dependent on resource
* Disk (1), serial (2), keyboard (6), soundcard (8)..... @
* Interactive, window event, semaphore (1 or 2)
— Boost decrements if quantum expires
» Anti-starvation hack
— If a ready process does not run for long time,
it gets 2 quanta at priority 15 @ @ ILI)
@ NN s @ w\c;»x‘.vnwf?\m. v ¢

Batch Algorithms

— Maximise throughput
« Throughput is measured in jobs per hour (or similar)
— Minimise turn-around time
* Turn-around time (T,)
— difference between time of completion and time of submission
— Or waiting time (T,) + execution time (T)
— Maximise CPU utilisation
« Keep the CPU busy
« Not as good a metric as overall throughput

THE UNIVERSITY OF 5
NEW SOUTH WALES

s

First-Come First-Served (FCFS)

+ Algorithm

— Each job is placed in single queue, the first
job in the queue is selected, and allowed to
run as long as it wants.

— If the job blocks, the next job in the queue is
selected to run

—When a blocked jobs becomes ready, it is
placed at the end of the queue

THE UNIVIRSITY OF 6
NEW SOUTH WALFS
—

s

Example

* 5Jobs
n TTTTT]

— Job 1 arrives slightly
before job 2, etc...

— All are immediately

HEN
_]3:‘:‘ runnable
T 1]

12|

— Execution times
indicated by scale on
X-axis

J4

s TTTTT]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 7
NEW SOUTH WALLS

@

FCFS Schedule

W TTTTT]

n HEN

K (1]

1 [T

Is [TTTTT]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 8
NEW SOUTH WALLS

FCFS
* Pros

— Simple and easy to implement
» Cons
— 1/0-bound jobs wait for CPU-bound jobs

—=Favours CPU-bound processes
« Example:

— Assume 1 CPU-bound process that computes for 1 second and
blocks on a disk request. It arrives first.

— Assume an I/O bound process that simply issues a 1000
blocking disk requests (very little CPU time)

— FCFS, the I/0 bound process can only issue a disk request per
second

» the I/O bound process take 1000 seconds to finish

— Another scheme, that preempts the CPU-bound process when

1/0O-bound process are ready, could allow I/O-bound process to

finish in 1000* average disk access time.
THE UNIVERSITY OF 9
NEW SOUTH WALLS

Shortest Job First

+ If we know (or can estimate) the execution
time a priori, we choose the shortest job
first.

* Another non-preemptive policy

THEE UNIVERSITY OF 10
NEW SOUTH WALTS

Our Previous Example

* 5Jobs
n TTTTT]

— Job 1 arrives slightly
before job 2, etc...

— All are immediately

[T
_]3:‘:‘ runnable
T 1]

12|

— Execution times
indicated by scale on
X-axis

J4

s TTTTT]

0 2 4 6 8 100 12 14 16 18 20

THEE UNIVERSITY OF "
NEW SOUTH WALTS

Shortest Job First

n [(TTTTT]

o L1

BT

iz [T

5 [TTTTT]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 12
NEW SOUTH WALTS

Shortest Job First

» Con
— May starve long jobs
— Needs to predict job length
* Pro
— Minimises average turnaround time (if, and only if, all
jobs are available at the beginning)

— Example: Assume for processes with execution times
ofa, b, c d.

« afinishes at time a, b finishes ata +b, cata +b + ¢, and so
on

« Average turn-around time is (4a + 3b + 2c + d)/4
« Since a contributes most to average turn-around time, it

Shortest Remaining Time First

» A preemptive version of shortest job first

* When ever a new jobs arrive, choose the
one with the shortest remaining time first
— New short jobs get good service

should be the shortest job.
@ THE UNIVIRSITY OF 13 @ THE UNIVERSITY Of 14
NEW SOUTH WALFS NEW SOUTH WALFS
L= L=
Example Shortest Remaining Time First
* 5 Jobs
n Djj — Release and execution n Djj
1l D:l:‘ times as shown 1l D:l:‘
5 . 5 .
W IO W IO
s TTTTT] s TTTTT]
0 2 4 6 8 100 12 14 16 18 20 0 2 4 6 8 100 12 14 16 18 20
THE UNIVE st\\yvo\ﬁ 15 THI A\?]\}/’\ st\\yvo\ﬁ 16
-@ NEW SOUTH WAL -@ NEW SOUTH WAL

Shortest Remaining Time First

n [T
n [1T1]

K (1]

W [T
s T T T 1]

0 2 4 6 8 100 12 14 16 18 20

THEE UNIVERSITY OF 17
NEW SOUTH WALES

s

Shortest Remaining Time First

n [T

n [I[]

K HE

W [TIIT
s 1] [[1]

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF 18
NEW SOUTH WALES

=

Shortest Remaining Time First

Shortest Remaining Time First

L

THEE UNIVERSITY OF 21
NEW SOUTH WALES

L

I T 11 J T 1]
P LT 1] 2 [(TT1]
3 HE K [T
iz (TTTTT] iz [TTTTT]
s 1] [T TT] s 1] [T TT]
@ 0 2 4 6 8 100 12 14 16 18 20 @ 0 2 4 6 8 100 12 14 16 18 20
Shortest Remaining Time First Shortest Remaining Time First
1 LT 1 (IT]
12 |:|:|:| 12 D:l:‘
3 (1] 3 (1]
iz (TTTTT] iz [TTTTT]
i 1] [TT11] i 1] [T 1]
0 2 4 6 8 100 12 14 16 18 20 0 2 4 6 8 100 12 14 16 18 20

THEE UNIVERSITY OF 22
NEW SOUTH WALES

%

s

Scheduling in Batch Systems

Arriving

job
o gt oooo0o0
queue

O[Ol = yumey

ssssssss Memory

scheduler

Three level scheduling

THEE UNIVERSITY OF 23
NEW SOUTH WALES

%

=

Three Level Scheduling

» Admission Scheduler
— Also called long-term scheduler

— Determines when jobs are admitted into the
system for processing

— Controls degree of multiprogramming

— More processes = less CPU available per
process

THE UNIVERSITY OF 24
NEW SOUTH WALES

Three Level Scheduling

* CPU scheduler
— Also called short-term scheduler

—Invoked when ever a process blocks or is
released, clock interrupts (if preemptive
scheduling), 1/0O interrupts.

— Usually, this scheduler is what we are
referring to if we talk about a scheduler.

THEE UNIVERSITY OF 25
NEW SOUTH WALTS

s

Three Level Scheduling

* Memory Scheduler
— Also called medium-term scheduler

— Adjusts the degree of multiprogramming via
suspending processes and swapping them
out

THEE UNIVERSITY OF 26
NEW SOUTH WALTS

LS

Some Issues with Priorities

» Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).

» Adaption is:

— usually ad-hoc,

« hence behaviour not thoroughly understood, and
unpredictable

— Gradual, hence unresponsive
Difficult to guarantee a desired share of the CPU
* No way for applications to trade CPU time

THEE UNIVERSITY OF 27
NEW SOUTH WALTS
s

Lottery Scheduling

» Each process is issued with “lottery
tickets” which represent the right to
use/consume a resource
— Example: CPU time

» Access to a resource is via “drawing” a
lottery winner.

— The more tickets a process possesses, the
higher chance the process has of winning.

THEE UNIVERSITY OF 28
NEW SOUTH WALTS
LS

Lottery Scheduling

» Advantages
— Simple to implement
— Highly responsive
+ can reallocate tickets held for immediate effect

— Tickets can be traded to implement individual
scheduling policy between co-operating
threads

— Starvation free

*» A process holding a ticket will eventually be
scheduled.

THEE UNIVERSITY OF 29
NEW SOUTH WALTS

s

Example Lottery Scheduling

» Four process running concurrently
—Process A: 15% CPU
—Process B: 25% CPU
—Process C: 5% CPU
—Process D: 55% CPU

* How many tickets should be issued to
each?

THE UNIVERSITY OF 30
NEW SOUTH WALTS

=

Lottery Scheduling Performance

30000 5

Observed performance of 15
two processes with

varying ratios of tickets : "

g 10000+

Observed Iteration Ratio
ve
Average Iterations (per sec)

5 Y
/%/
0 T T T T 1 0 T T T 1
0 2 4 6 8 10 50 100 150 200
Allocated Ratio Time (sec)
Figure 4: Relative Rate Accuracy. For each allocated ratio, the Figure 5: Fairness Over Time. Two tasks executing the Dhry-
observed ratio is plotted for each of three 60 second runs. The
ca . P . stone benchmark with a 2: 1 ticket allocation. Averaged over the
gray line indicates the ideal where the two ratios are identical. " .
entire run, the two tasks executed 25378 and 12619 iterations/sec.,

for an actual ratio of 2.01: 1.

THEE UNIVERSITY OF 31 THE UNIVERSITY OF 32
NEW SOUTH WALTS NEW SOUTH WALTS

s LS

Fair-Share Scheduling Two Level Scheduling

« So far we have treated processes as individuals * Interactive systems Commonly employ
+ Assume two users two-level scheduling

— One user has 1 process
— CPU scheduler and Memory Scheduler

— Second user has 9 processes
+ The second user gets 90% of the CPU * Memory scheduler was covered in VM

+ Some schedulers consider the owner of the process in — We will focus on CPU scheduling
determining which process to schedule

— E.g., for the above example we could schedule the first user’s
process 9 times more often than the second user’s processes

* Many possibilities exist to determine a fair schedule
— E.g. Appropriate allocation of tickets in lottery scheduler

THEE UNIVERSITY OF 33 THE UNIVERSITY OF 34
NEW SOUTH WALTS NEW SOUTH WALTS
s LS

