I/O Management

Chapter 5

THI UNIVIRSITY OF
3| NEW SOUTH WALES

Operating System Design

Issues

» The quest for generality/uniformity:

— Ideally, handle all I/O devices in the same way
 Both in the OS and in user applications
— Problem:
« Diversity of /O devices
« Especially, different access methods (random access versus
stream based) as well as vastly different data rates.
« Generality often compromises efficiency!
— Hide most of the details of device 1/O in lower-level
routines so that processes and upper levels see

devices in general terms such as read, write, open,
close.

THI UNIVIRSITY OF 3
NEW SOUTH WALES

Interrupt Handlers
* Interrupt handlers

— Can execute at (almost) any time
* Raise (complex) concurrency issues in the kernel

Can propagate to userspace (signals, upcalls), causing similar
issues

Generally structured so /O operations block until interrupts
notify them of completion

- kern/dev/lamebus/lhd.c

THI UNIVIRSITY OF 5
NEW SOUTH WALES

Operating System Design

Issues
« Efficiency

— Most I/O devices slow compared to main memory
(and the CPU)

« Use of multiprogramming allows for some processes to be
waiting on 1/O while another process executes
« Often /O still cannot keep up with processor speed
« Swapping may used to bring in additional Ready processes
— More /O operations
+ Optimise I/O efficiency — especially Disk &
Network I/0

THI UNIVIRSITY OF 2
3| NEW SOUTH WALES

I/O Software Layers

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

| Hardware

Layers of the 1/0 Software System

THI UNIVIRSITY OF 4
NEW SOUTH WALES

Interrupt Handler Example

static int lhd_iodone (struct lhd_softc *1h,

int err)
1hd_io(struct device *d, i
struct uio *uio) lh—>1h_result = err; «—— —~
{ V(lh->1h_done) ;
: \
/* Loop over all the sectors

* we were asked to do. */

void
for (i=0; i<len; i++) { m1hd71rq1vold *v1lh)
/* Wait until nobody else { |
* is using the device. */

P(lh->1h _clear); val = lhd_rdreg(lh, LHD REG_STAT);
/* Tell it what sector we want... */
1hd_wreg(lh, LHD_REG_SECT, sector+i); case LHD_IDLE:
/* and start the operation. */ case LHD_WORKING:
1hd_wreg (lh, LHD_REG_STAT, statval); break;

/* Now wait until the interrupt

* handler tells us we're dong. */ case LHD INVSECT:

P(lh->1h_done) ; @ case LHD_MEDIA:

1hd wreg(lh, LHD REG_STAT, 0);

/* Get the result value Thd iodone(1h,

* saved by the interrupt handler. */ 1hd code to errno(lh, val));
result = lh->lh_result; break; o
! }

}
THI UNIVIRSITY OF

switch (val & LHD_STATEMASK) (

case LHD_OK:

6
NEW SOUTH WALES

|

Interrupt Handler Steps

Save Registers not already saved by hardware interrupt
mechanism

(Optionally) set up context for interrupt service procedure

— Typically, handler runs in the context of the currently running process

No expensive context switch

Set up stack for interrupt service procedure

— Handler usually runs on the kernel stack of current process

Ack/Mask interrupt controller, re-enable other interrupts

— What does this imply?

THI UNIVIRSITY OF 7
NEW SOUTH WALES

L

Sleeping in Interrupts

« Interrupt generally has no context
— Unfair to sleep interrupted process

— Where to get context
« May be asynchronous (network)
« Calling context may be on another CPU, dead, etc.

— What goes into the ready queue?

* What to do?
— Top and Bottom Half
— Linux implements with tasklets and workqueues

THI UNIVIRSITY OF 9
NEW SOUTH WALES

Device Drivers

 Drivers classified into similar categories
— Block devices and character (stream of data) device
« OS defines a standard (internal) interface to
the different classes of devices
— Device specs often help, e.g. USB
« Device drivers job

— translate request through the device-independent
standard interface (open, close, read, write) into
appropriate sequence of commands (register
manipulations) for the particular hardware

— Initialise the hardware at boot time, and shut it down
cleanly at shutdown

HI' UNIVIRSITY OF "
NEW SOUTH WALES

Interrupt Handler Steps

* Run interrupt service procedure
— Acknowledges interrupt at device level
— Figures out what caused the interrupt
. S;C%i,ved a network packet, disk read finished, UART transmit queue
P
— If needed, it signals blocked device driver
* In some cases, will have woken up a higher priority
blocked thread
— Choose newly woken thread to schedule next.
— Set up MMU context for process to run next
— What if we are nested?
* Load new/original process' registers
* Re-enable interrupt; Start running the new process

THI UNIVIRSITY OF 8
3| NEW SOUTH WALES

+ Logical position of device drivers
is shown here

 Drivers (originally) compiled into

Device Drivers

the kernel r

— Including OS/161

— Device installers were P
technicians

rarely changed
« Nowadays they are dynamically Z‘:;";:i

— Number and types of devices [J

loaded when needed | Printer H Gamcorder || Go-ROM |
— Linux modules “ T =

B Lo i 2
— Typical users (device installers) Haware [Printer convoter] [Cameorder

can’t build kernels -t e 1
— Number and types vary greatly =~ pevices %}(”Q ‘@ ;

« Even while OS is running (e.g
hot-plug USB devices)

THIL UNIVIRSITY OF 10
NEW SOUTH WALES

L

Device Driver

» After issuing the command to the device, the
device either
— Completes immediately and the driver simply returns
to the caller
— Or, device must process the request and the driver
usually blocks waiting for an 1/0 complete interrupt.
 Drivers are re-entrant as they can be called by
another process while a process is already
blocked in the driver.
— Re-entrant: Code that can be executed by more than
one thread (or CPU) at the same time
« Manages concurrency using synch primitives

HI' UNIVIRSITY OF 12
NEW SOUTH WALES

Device-Independent I/O
Software
» There is commonality between drivers of
similar classes

Divide I/O software into device-dependent
and device-independent I/O software

* Device independent software includes

— Buffer or Buffer-cache management

— Managing access to dedicated devices

— Error reporting

THI UNIVIRSITY OF 13

3| NEW SOUTH WALES

|

Driver < Kernel Interface

» Major Issue is uniform interfaces to devices and
kernel

— Uniform device interface for kernel code
« Allows different devices to be used the same way

— No need to rewrite file-system to switch between SCSI, IDE or
RAM disk

« Allows internal changes to device driver with fear of breaking
kernel code

— Uniform kernel interface for device code

« Drivers use a defined interface to kernel services (e.g.
kmalloc, install IRQ handler, etc.)

« Allows kernel to evolve without breaking existing drivers
— Together both uniform interfaces avoid a lot of
programming implementing new interfaces

THI UNIVIRSITY OF 15
NEW SOUTH WALES

Device-Independent I/O Software

Operating system Operating system

i gy g - ol o, o

Disk driver Printer driver Keyboard driver Disk driver Printer driver Keyboard driver

(a) (b)

(a) Without a standard driver interface
(b) With a standard driver interface

HI UNIVIRSITY OF 14
NEW SOUTH WALES

Binary driver interfaces

* Device creators do not wish to reveal
driver source code and ship a binary blob
— 3D cards (ATI, NVIDIA)

— High performance |/O cards (network, disk)

» Kernel ABI (size and position of structures,
function locations, etc) must remain
constant.

* Problem for open source kernel!

THIL UNIVIRSITY OF 16
NEW SOUTH WALES

(a)
(b)
(c)
(d)

i

Device-Independent I/O Software

Lnr s
s

P if\ N
=} = { ;
R NS \%‘j
7 iz

= ks
[P

|

e M

Yo

Unbuffered input
Buffering in user space
Single buffering in the kernel followed by copying to user

space

Double buffering in the kernel

THI UNIVIRSITY OF 17
NEW SOUTH WALES

No Buffering

* Process must read/write a device a
byte/word at a time
— Each individual system call adds significant
overhead
— Process must what until each 1/0 is complete
* Blocking/interrupt/waking adds to overhead.

+ Many short runs of a process is inefficient (poor
CPU cache temporal locality)

HI' UNIVIRSITY OF 18
NEW SOUTH WALES

User-level Buffering

* Process specifies a memory buffer that incoming
data is placed in until it fills
— Filling can be done by interrupt service routine

— Only a single system call, and block/wakeup per data
buffer

* Much more efficient

Operating System User Process
—_—
VO Device L g
—
THI UNIVIRSITY OF 19

NEW SOUTH WALES

Single Buffer

» Operating system assigns a buffer in main
memory for an 1/O request

» Stream-oriented
—Used a line at time

— User input from a terminal is one line at a time
with carriage return signaling the end of the
line

— Output to the terminal is one line at a time

THI UNIVIRSITY OF 21
NEW SOUTH WALES

Single Buffer

— User process can process one block of data
while next block is read in

— Swapping can occur since input is taking
place in system memory, not user memory

— Operating system keeps track of assignment
of system buffers to user processes
Operating System User Process

In — Move =

V0 Device l ¥ l |

‘IF\:EHWU;‘(I!‘_/J‘T‘S‘ (b) Single buffering,

23

User-level Buffering

* Issues

— What happens if buffer is paged out to disk
« Could lose data while buffer is paged in
« Could lock buffer in memory (needed for DMA), however
many processes doing I/O reduce RAM available for paging.
Can cause deadlock as RAM is limited resource
— Consider write case
* When is buffer available for re-use?

— Either process must block until potential slow device drains
buffer

— or deal with asynchronous signals indicating buffer drained

THIL UNIVIRSITY OF 20
NEW SOUTH WALES

Single Buffer

+ Block-oriented
— Input transfers made to buffer
— Block moved to user space when needed

— Another block is moved into the buffer
* Read ahead

THIL UNIVIRSITY OF 22
NEW SOUTH WALES

Single Buffer Speed Up

* Assume
— Tis transfer time for a block from device
— Cis computation time to process incoming block
— M s time to copy kernel buffer to user buffer

» Computation and transfer can be done in parallel
» Speed up with buffering

T+C
max(7,C)+ M

THI UNIVIRSITY OF 24
NEW SOUTH WALES

Single Buffer

» What happens if kernel buffer is full, the
user buffer is swapped out, and more data
is received???

— We start to lose characters or drop network
packets

THI UNIVIRSITY OF 25
NEW SOUTH WALES

Double Buffer Speed Up

» Computation and Memory copy can be done in
parallel with transfer

» Speed up with double buffering

T+C
max(7,C+ M)

* Usually Mis much less than T giving a
favourable result

THI UNIVIRSITY OF 27
NEW SOUTH WALES

Double Buffer

» Use two system buffers instead of one

* A process can transfer data to or from one
buffer while the operating system empties
or fills the other buffer

Operating System User Process

VO Device

(c) Double buffering

THIL UNIVIRSITY OF 26

18 NEW SOUTH WALES

Double Buffer

» May be insufficient for really bursty traffic

— Lots of application writes between long
periods of computation

— Long periods of application computation while
receiving data

— Might want to read-ahead more than a single
block for disk

THIL UNIVIRSITY OF 28
NEW SOUTH WALES

Circular Buffer

* More than two buffers are used

« Each individual buffer is one unit in a circular
buffer

* Used when I/O operation must keep up with
process

Operating System User Process

-) - D=

{d) Circular buffering

THI UNIVIRSITY OF 29
NEW SOUTH WALES

Important Note

* Notice that buffering, double buffering, and
circular buffering are all

Bounded-Buffer
Producer-Consumer
Problems

THI UNIVIRSITY OF 30
NEW SOUTH WALES

Is Buffering Always Good?

T+C T+C
max(7,C)+M max(T,C+M)

Single Double

» Can M be similar or greater than C or T?

THI UNIVIRSITY OF 31

NEW SOUTH WALES

Buffering in Fast Networks

User process
- 7
= @
space L
Kernel { l‘ %;
space T

- Network
controller
3
[— J

Network 77

Networking may involve many copies
+ Copying reduces performance
— Especially if copy costs are similar to or greater than computation or
transfer costs
Super-fast networks put significant effort into achieving zero-copy
« Buffering also increases latency

THI UNIVIRSITY OF
NEW SOUTH WALES

I/O Software Summary

Layers of the I/O system and the main
functions of each layer

THI UNIVIRSITY OF 33

NEW SOUTH WALES

e}
Layer reply 1/ functions
Vo User processes | Make 1O call; format 1/O; spooling
request _’; ?
Device-independent : !))
. software ’ Naming, protection, blocking, buffering, allocation

T

* Device drivers + Set up device registers; check status
T

Interrupt handlers \ Wake up driver when 1/O completed
T

Hardware Perform 1/O operation

32

