Memory Management

THI UNIVIRSITY OF 1
3| NEW SOUTH WALES

Process

» One or more threads of execution
* Resources required for execution
— Memory (RAM)

* Program code (“text”)

+ Data (initialised, uninitialised, stack)

« Buffers held in the kernel on behalf of the process
— Others

* CPU time

* Files, disk space, printers, etc.

HI UNIVIRSITY OF
NEW SOUTH WALES

Some Goals of an Operating
System

+ Maximise memory utilisation

» Maximise CPU utilization

* Minimise response time

* Prioritise “important” processes

* Note: Conflicting goals = tradeoffs
— E.g. maximising CPU utilisation (by running
many processes) increases (degrades)
system response time.

THI UNIVIRSITY OF 3
3| NEW SOUTH WALES

Memory Management

» Keeps track of what memory is in use and
what memory is free

+ Allocates free memory to process when
needed
— And deallocates it when they don’t

» Manages the transfer of memory between
RAM and disk.

THI UNIVIRSITY OF
NEW SOUTH WALES

Memory Hierarchy

* |deally, programmers
want memory that is
— Fast
— Large
— Nonvolatile | mngar

S
* Not possible ‘ Lisginis ek a

* Memory manager

coordinates how v AN
memory hierarchy is 4 |)

RAM < Disk -

used. : - 4
: et
— Focus usually on S -

THI UNIVIRSITY OF 5
| NEW SOUTH WALES

Memory Management

» Two broad classes of memory
management systems
— Those that transfer processes to and from
disk during execution.
+ Called swapping or paging
— Those that don’t
* Simple
+ Might find this scheme in an embedded device,
phone, smartcard, or PDA.

HI UNIVIRSITY OF 6
NEW SOUTH WALES

Basic Memory Management
Monoprogramming without Swapping or Paging

OXFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program ar
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0

(@) (b) (©)

Three simple ways of organizing memory
wun-. @n operating system with one user process.

i NEW SOUTH WALES

Idea

» Subdivide memory and run more than one
process at oncel!lll
— Multiprogramming, Multitasking

THIE UNIVIRSITY Of 9
NEW SOUTH WALES

Monoprogramming

» Okay if
— Only have one thing to do

— Memory available approximately equates to
memory required

» Otherwise,
— Poor CPU utilisation in the presence of /O
waiting
— Poor memory utilisation with a varied job mix

HI UNIVIRSITY OF 8
NEW SOUTH WALES

Modeling Multiprogramming

. 20% 1/O wait
¥ 100 —
8
14 o i
g g0 - 50% 1/O wait
£
s 60 - 80% 1/0 wait
2
S 40 -
E]
Z 20
(&}
N I I A N M B

0 1 2 3 4 5 6 7 8 9 10

Degree of multiprogramming

Problem: How to divide memor

* One approach
— divide memory into fixed —_
equal-sized partitions
— Any process <= partition
size can be loaded into —
any partition

THI UNIVIRSITY OF
| NEW SOUTH WALES

%ﬁ CPU utilization as a function of number of processes in
NEW 50U H WALES memory

Simple MM: Fixed, equal-sized
partitions —
* Any unused space in the
partition is wasted -
— Called internal
fragmentation
* Processes smaller than —
main memory, but larger
than a partition cannot
run.

HI UNIVIRSITY OF

NEW SOUTH WALES

Simple MM: Fixed, variable-sized

* Issue

— Some partitions may
be idle

« Small jobs available, e]

but only large partition

free e

T seseny

partitions
Vurinly
. g L, —
» Multiple Queues: ry pertens |
— Place process in queue for smallest
partition that it fits in. Pugiton §
O setsenz
CHOHO
THIE UNIVIRSITY OF 13
NEW SOUTH WALES
» Single queue, search
for any jobs that fits
« Small jobs in large Parifiend
partition if necessary 7
— Increases internal s ‘*‘ SRR
memory fragmentation wﬁﬁ 3,
,&(Farttond
Vedifien
e |
| gt |
i 2
THIE UNIVIRSITY OF 15
NEW SOUTH WALES

Dynamic Partitioning

+ Partitions are of variable length
* Process is allocated exactly what it needs
— Assume a process knows what it needs

THI UNIVIRSITY OF 17
NEW SOUTH WALES

THI UNIVIRSITY OF 14
Fixed Partition Summary
» Simple
» Easy to implement
» Can result in poor memory utilisation
— Due to internal fragmentation
» Used on OS/360 operating system
(OS/MFT)
— Old mainframe batch system
« Still applicable for simple embedded
systems
AR, °
i~ [[Eem) [Fe)
System System System System
Process 1 M Process 1 20M Process | }‘:‘M
SaM Process 2 %HM Process 2 %14&1
o ‘EIM Process 3 }mu
Fam
{a) (1] (e} (d)

Figure 7.4 The Effect of Dynamic Partitioning

[Ohperating | [Operating | [Operating | [Thperating |
System System System System

Process 2 }I-‘}M
Process 1

=

% Process 4 }-m Process 4 ?-m Processd | #M
+

Foem Fem Fam

18M Process 3 1M Process 3 LEM Process 3 &M

Process 3

M Fam Fam Fam

(&) n ig) (h)

Figure 7.4 The Effect of Dynamic Partitioning

Dynamic Partitioning

* In previous diagram
— We have 16 meg free in total, but it can’t be used to
run any more processes requiring > 6 meg as itis
fragmented
— Called external fragmentation
* We end up with unusable holes

* Reduce external fragmentation by compaction
— Shuffle memory contents to place all free memory together in
one large block.
— Compaction is possible only if relocation is dynamic, and is done
at execution time.

HI UNIVIRSITY OF 20

Recap: Fragmentation

« External Fragmentation:
— The space wasted external to the allocated memory
regions.
— Memory space exists to satisfy a request, but it is
unusable as it is not contiguous.

* Internal Fragmentation:
— The space wasted internal to the allocated memory
regions.

— allocated memory may be slightly larger than
requested memory; this size difference is wasted
memory internal to a partition.

THI UNIVIRSITY OF 21
8| NEW SOUTH WALES

NEW SOUTH WALES

Classic Approach

* Represent available memory as a linked
list of available “holes”.
—Base, size
—Kept in order of increasing address

« Simplifies merging of adjacent holes into larger
holes.

—* Size /' Size /' Size /. Size

Link Link Link Link

THI UNIVIRSITY OF 23
| NEW SOUTH WALES

Dynamic Partition Allocation
Algorithms

» Basic Requirements

— Quickly locate a free partition satisfying the
request

— Minimise external fragmentation

— Efficiently support merging two adjacent free
partitions into a larger partition

THIL UNIVIRSITY OF 22
NEW SOUTH WALES

Coalescing Free Partitions with Linked
Lists

Before X terminates After X terminates

becomes

AN
I

becomes

\
\
g

| & |
] becomes
| & |
1 x V] becomes

Four neighbor combinations for the terminating
process X

HI' UNIVIRSITY OF 24
NEW SOUTH WALES

X
\

Dynamic Partitioning Placement
Algorithm

« First-fit algorithm
— Scan the list for the first entry that fits
« If greater in size, break it into an allocated and free part
« Intent: Minimise amount of searching performed
— Generally results in many processes loaded, and
holes at the front end of memory that must be
searched over when trying to find a free block.
— May have lots of unusable holes at the beginning.
« External fragmentation
— Tends to preserve larger blocks at the end of memory

— | Size Size Size Size
/] e

THI UNIVIRSITY OF 25
NEW SOUTH WALES

Dynamic Partitioning Placement
Algorithm

* Best-fit algorithm

— Chooses the block that is closest in size to the
request

— Poor performer
» Has to search complete list
+ Since smallest block is chosen for a process, the
smallest amount of external fragmentation is left
— Create lots of unusable holes

Add) Addi Add) Add)

| Size /' Size Size Size
Link] Link

THI UNIVIRSITY OF 27
NEW SOUTH WALES

=
=
=

Dynamic Partitioning Placement
Algorithm

« Next-fit
— Like first-fit, except it begins its search from the point
in list where the last request succeeded instead of at
the beginning.
« Spread allocation more uniformly over entire memory

— More often allocates a block of memory at the end of memory
where the largest block is found

« The largest block of memory is broken up into smaller blocks

— | Size Size Size Size
/] e

THIL UNIVIRSITY OF 26
NEW SOUTH WALES

F — S —
o, I First Fit 12 —
2
— wnf—]
westrie
L -]
e -
et (14)
i [—] s —]
o —] P —
L O mmerems v
Ne
- |
m

(a) Refore

>
7

Figure 7.5 Example Memory Configuration Before
and After Allocation of 16 Mbyte Block

Dynamic Partitioning Placement
Algorithm

» Worst-fit algorithm
— Chooses the block that is largest in size
(worst-fit)
+ |dea is to leave a usable fragment left over
— Poor performer
» Has to search complete list
« Still leaves many unusable fragments

Add) Addi Add) Add)

— | Size Size Size Size
/ Link] o

THIL UNIVIRSITY OF 28
NEW SOUTH WALES

LSt

Dynamic Partition Allocation
Algorithm

* Summary

— First-fit and next-fit are generally better than
the others and easiest to implement

* Note: Used rarely these days
— Typical in-kernel allocators used are lazy
buddy, and slab allocators
» Might go through these later in session (or in
extended)

THI UNIVIRSITY OF 30
NEW SOUTH WALES

Compaction

* We can reduce
external fragmentation
by compaction

— Only if we can relocate
running programs

— Generally requires
hardware support

THIE UNIVIRSITY Of
NEW SOUTH WALES

Issues with Dynamic
Partitioning
* We have ignored

— Relocation

« How does a process run in
different locations in memory?

— Protection

* How do we prevent processes
interfering with each other

THIE UNIVIRSITY Of
NEW SOUTH WALES

Example Logical Address-Space
LayOUt nllllhrmlh:nl Entry point : [Drocess Control Bhek]y 0X0000
to program
+ Logical m :l Braneh
addresses refer B instructiof
to specific Increasing
locations within =~ "
the program Reference|
» Once running, LE
these address Data
must refer to real
physical memory Curmet top >
* When are logical Stack
addresses bound OKFFFF
to physical?
THI UNIVIRSITY OF
NEW SOUTH WALES
Figure 7.1 _Addressing Requirements for a Process

When are memory
addresses bound? .

* Compile/link time
— Compiler/Linker binds the
addresses
— Must know “run” location at
compile time
— Recompile if location changes
* Load time
— Compiler generates relocatable
code
— Loader binds the addresses at
load time
* Runtime

— Logical compile-time addresses
translated to physical addresses T }

execution
time (run
time)

by special hardware. binary

memory
image

Hardware Support for Runtime
Binding and Protections

» For process B to run using logical
addresses
— Need to add an appropriate offset to its

logical addresses
« Achieve relocation
« Protect memory “lower” than B Jimit I

— Must limit the maximum logical address B

can generate

« Protect memory “higher” than B

base

HI UNIVIRSITY OF
NEW SOUTH WALES 0x0000

-Mi

Hardware Support for Relocation and
Limit Registers

limit relocation
register register
logical physical
address yes address
CPU < memory
no
trap; addressing error
HIUNIVIRSITY OF 36

NEW SOUTH WALES

Base and Limit Registers
OxFFFF
« Also called base=0x8000
— Base and bound registers fmit = 0x2000
— Relocation and limit registers
« Base and limit registers
— Restrict and relocate the currently W.FFI

. limit
active process 048000

— Base and limit registers must be
changed at
« Load time
* Relocation (compaction time)
« On a context switch

OFFF 3
rocess
0x0000 base

Ly THI UNIVIRSITY OF
NEW SOUTH WALES 0x0000

Base and Limit Registers

» Cons

— Physical memory allocation must still be
contiguous

— The entire process must be in memory

— Do not support partial sharing of address
spaces

THIE UNIVIRSITY Of 39
NEW SOUTH WALES

Swapping

« A process can be swapped temporarily out of memory to
a backing store, and then brought back into memory for
continued execution.

» Backing store — fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images.

« Can prioritize — lower-priority process is swapped out so
higher-priority process can be loaded and executed.

» Major part of swap time is transfer time; total transfer
time is directly proportional to the amount of memory
swapped.

— slow

HIUNIVIRSITY OF 41
NEW SOUTH WALES

Base and Limit Registers
OxFFFF
o AISO Ca"ed base=0x4000
— Base and bound registers fmit = 0x3000
— Relocation and limit registers
« Base and limit registers

— Restrict and relocate the currently
active process
— Base and limit registers must be
changed at
« Load time
* Relocation (compaction time)
« On a context switch

OX6FFF
limit
0x4000

l0x2FFF
Process C
lox0000 base

THIE UNIVIRSITY Of
NEW SOUTH WALES 0x0000

Timesharing

OXFFFF

* Thus far, we have a system
suitable for a batch system
— Limited number of dynamically
allocated processes
« Enough to keep CPU utilised

— Relocated at runtime
— Protected from each other
» But what about timesharing?

— We need more than just a small
number of processes running at
once

THIE UNIVIRSITY Of
NEW SOUTH WALES 0x0000

Schematic View of Swapping

ape-ating
syslem
(o
o ——
luser _
‘space backing store
main memaory

THI UNIVIRSITY OF 42
NEW SOUTH WALES

So far we have assumed a
process is smaller than memory

* What can we do if a process is larger than
main memory?

THI UNIVIRSITY OF 43
NEW SOUTH WALES

Overlays for a Two-Pass Assembler

symbol 20K
table
common 30K
routines
overlay 10K
driver
70K
80K
= <

THIE UNIVIRSITY OF 45
NEW SOUTH WALES
+ Partition physical memory into small aﬂ?:;s'
equal sized chunks space
— Called frames 50K-64K [X
Divide each process’s virtual (logical) 56K-60k | X__| } Virtual page
address space into same size chunks O
- Called pages ! 48K-52K [X
— Virtual memory addresses consist of a iAedsk T
page number and offset within the page -
0S maintains a page table 40K-44kc] X Physical
— contains the frame location for each page 36K-40K] S memory
— Used to translate each virtual address to 32¢-36K| X address
physical address 28K-32K | X | 28K-32K
— The relation between 24K-28K | X 24K-28K
virtual addresses and physical memory o o4k [3 20K-24K
addresses is given by page table
) A 16K-20K [4 16K-20K
+ Process’s physical memory does not isiec[o i5ieARK
have to be contiguous
8K-12k|[6 8K-12K
ak-8K| 1 Y 4K-8K
THI UNIVIRSITY OF LS e i
NEW SOUTH WALES
Page frame

Overlays

» Keep in memory only those instructions
and data that are needed at any given
time.

* Implemented by user, no special support
needed from operating system

» Programming design of overlay structure
is complex

THIL UNIVIRSITY OF 44
NEW SOUTH WALES

Virtual Memory

» Developed to address the issues identified with
the simple schemes covered thus far.

* Two classic variants
— Paging
— Segmentation

» Paging is now the dominant one of the two
» Some architectures support hybrids of the two
schemes

THIL UNIVIRSITY OF 46
NEW SOUTH WALES

Frame Main memory Main memory Main memory
pumber

L o Al L A0

1 1 Al 1 Al

2 2 A2 2 Al

3 3 A3 3 3

Fl 4 4 KRN

5 5 5 AL

6 6 6 AR RN

7 7 7

8 B 8

9 k] 9

10 10 10

11 11 11

1z 12 12

13 13 13

14 14 14

(a) Fifteen Available Frames () Load Process A (b Load Process B

Figure 7.9 Assignment of Process Pages to Free Frames

Main memory Main memory Main memory

o AN o AD o AN

1 Al 1 Al 1 Al

2 Al 2 A2 2 A2

3 AJd 3 A3 3 A3

q T30 4 4 DO

5 TREN K 5 D1

6 B2 6 6 D2

7 O T QA o 7 OO

8 C.1 8 .l 8 C.l

[(5 9 Bl 9 2

10 3 10 3 10 3

11 11 11 D3

12 12 12 D4

13 n 13

14 14 14

{d) Load Process C {e) Swapout (f) Load Process D
0 — 0 0 4 [13]
1] — 1 1 14
P | 2 . — 2 2] ¢ Free framg
B3 Process B 3 10 311 list
Process A page table Process C 412
page table page table Process D
page table

Memory Management Unit

The CPU sends virtual
addresses to the MMU

CPU
package
CPU
/ Memory M Disk
management emory controller
unit
3 I

The MMU sends physical
addresses to the memory

The position and function of the MMU

THI UNIVIRSITY OF
NEW SOUTH WALES

52

L

Virtual Memory - Segmentation

subroutine stack

* Memory-management scheme
that supports user’s view of
memory.

* A program is a collection of
segments. A segmentis a

logical unit such as: symbol
table

— main program, procedure,
function, method, object, local

variables, global variables, Sart
common block, stack, symbol main
table, arrays program

HI UNIVIRSITY OF

Paging

* No external fragmentation
Small internal fragmentation
Allows sharing by mapping several pages
to the same frame
» Abstracts physical organisation

— Programmer only deal with virtual addresses
» Minimal support for logical organisation

— Each unit is one or more pages

THIL UNIVIRSITY OF 51

3| NEW SOUTH WALES

NEW SOUTH WALES

L o) logical addressspace |

MMU Operation

Assume for now that
the page table is
contained wholly in
registers within the
MMU

3

Internal operation of MMU with 16 4 KB pages

53

THI UNIVIRSITY OF
NEW SOUTH WALES

L

Logical View of Segmentation
1
4
2
3
user space physical memory space

Segmentation Architecture

» Logical address consists of a two tuple: <segment-
number, offset>,
— ldentifies segment and address with segment
» Segment table — each table entry has:
— base — contains the starting physical address where the
segments reside in memory.
— limit - specifies the length of the segment.
» Segment-table base register (STBR) points to the
segment table’s location in memory.
« Segment-table length register (STLR) indicates number
of segments used by a program;
segment number s is legal if s < STLR.

THI UNIVIRSITY OF 56
NEW SOUTH WALES

Segmentation Hardware

——»S

—1 limit | base

segment

table
CPU s
<
no
trap; addressing error physical memory

THIL UNIVIRSITY OF 57

NEW SOUTH WALES

T T [
v ™.
p ~
/ AN
AN
/ subroutine stack N\
/ \\ 14
/ segment 3 segment 0
2400
symbol
segment 0 table
limit | base
sart segment 4 0[1000 | 1400
— 1| 400 e300 |
\ main | 2| 400 | 4300
\ program /3| oo | a200 segment 3
\ /4| 1000 | 4700
\ L/ segmenttable
\s\egmeml segment 2 P T
~ - 4
~
logical address space segment 4
segment 1
6700 ———— || 58
physical memor

y/ AN
/ \
editor |
segment 0 ‘
\ Foo i it | bass
\ /o 2seee | 4062
. segmen1 /1 |_4azs | seade editor
. e segment table
» — process P,
logical memory 1 68348 T
process P i
/T h
/
aditor —
Segment 0
| i [s |
I FaE /ol zoess | 4506e physical memory
\ segment1 /1| 8850 | s000s
. - segment table
THI UNIVIRSITY Of — process P, 60
NEW SOUTH WALES logical memory
process £,

Segmentation Architecture

* Protection. With each entry in segment table
associate:

— validation bit = 0 = illegal segment
— read/write/execute privileges

« Protection bits associated with segments; code
sharing occurs at segment level.

» Since segments vary in length, memory
allocation is a dynamic partition-allocation
problem.

» A segmentation example is shown in the
following diagram

THIL UNIVIRSITY OF 59
NEW SOUTH WALES

Segmentation Architecture

* Relocation.
— dynamic
= by segment table

» Sharing.
— shared segments
= same physical backing multiple segments
= ideally, same segment number
* Allocation.
— First/next/best fit
= external fragmentation

THI UNIVIRSITY OF 61
NEW SOUTH WALES

THI UNIV
NEW SOU

Segmentation

Cans'doniinn g Hogradtaten

No Yy
4 ey
Yoa Yo
e o

Wi el e i e Tl Erigmcs
Rveiees it gl
tmﬂ@éaig et acins
ERGRREA | SpaptiaE R
fe g

fo e

Comparison of paging and segmentation

62

11

