
1

Real-time Scheduling

Tanenbaum

Section 2.5, Section 7.4.2-7.4.4



2

Real Time Scheduling

• Correctness of the system may depend not only 

on the logical result of the computation but also 

on the time when these results are produced, 

e.g.

– Tasks attempt to control events or to react to events 

that take place in the outside world

– These external events occur in real time and 

processing must be able to keep up

– Processing must happen in a timely fashion,

• neither too late, nor too early



3

Real Time System (RTS)

• RTS accepts an activity A and guarantees its 

requested (timely) behaviour B if and only if

– RTS finds a schedule

• that includes all already accepted activities Ai and the new 

activity A, 

• that guarantees all requested timely behaviour Bi and B, and

• that can be enforced by the RTS.

• Otherwise, RT system rejects the new activity A.



4

Typical Real Time Systems

– Control of laboratory experiments

– Robotics

– (Air) Traffic control

– Controlling Cars / Trains/ Planes

– Telecommunications

– Medical support (Remote Surgery, Emergency room)

– Multi-Media

• Remark: Some applications may have only soft-real 

time requirements, but some have really hard real-time

requirements



5

Hard-Real Time Systems

• Requirements:
– Must always meet all deadlines (time guarantees)

– You have to guarantee that in any situation these 
applications are done in time, otherwise dangerous 
things may happen

Examples:
1. If the landing of a fly-by-wire jet cannot react to 

sudden side-winds within some milliseconds, an 
accident might occur. 

2. An airbag system or the ABS has to react within 
milliseconds



6

Soft-Real Time Systems

Requirements:

Must mostly meet all deadlines, e.g. 99.9% of cases

Examples:

1. Multi-media: 100 frames per day might be dropped 

(late) 

2. Car navigation: 5 late announcements per week are 

acceptable

3. Washing machine: washing 10 sec over time might 

occur once in 10 runs, 50 sec once in 100 runs. 



7

Properties of Real-Time Tasks
• To schedule a real time task, its properties 

must be known a priori

• The most relevant properties are

– Arrival time (or release time) ai

– Maximum execution time (service time)

– Deadline di



8

Categories of Real time tasks

• Periodic

– Each task is repeated at a regular interval

– Max execution time is the same each period

– Arrival time is usually the start of the period

– Deadline is usually the end

• Aperiodic (sporadic)

– Each task can arrive at any time



9

Real-time scheduling approaches

• Static table-driven scheduling
– Given a set of tasks and their properties, a schedule 
(table) is precomputed offline.
• Used for periodic task set

• Requires entire schedule to be recomputed if we need to 
change the task set

• Static priority-driven scheduling
– Given a set of tasks and their properties, each task is 
assigned a fixed priority

– A preemptive priority-driven scheduler used in 
conjunction with the assigned priorities
• Used for periodic task sets



10

Real-time scheduling approaches

• Dynamic scheduling

– Task arrives prior to execution

– The scheduler determines whether the new 

task can be admitted

• Can all other admitted tasks and the new task 

meet their deadlines?

– If no, reject the new task

– Can handle both periodic and aperiodic tasks 



11

Scheduling in Real-Time Systems

• We will only consider periodic systems 

Schedulable real-time system

• Given

– m periodic events

– event i occurs within period Pi and requires Ci

seconds

• Then the load can only be handled if

1

1
m

i

i i

C

P=

≤∑



12

Two Typical Real-time 

Scheduling Algorithms
• Rate Monotonic Scheduling

– Static Priority priority-driven scheduling

– Priorities are assigned based on the period of 

each task

• The shorter the period, the higher the priority 

• Earliest Deadline First Scheduling

– The task with the earliest deadline is chosen 

next



13

A Scheduling Example

• Three periodic Tasks



14

Is the Example Schedulable

• YES

1

1
m

i

i i

C

P=

≤∑

808.0
50

5

40

15

30

10
=++



15

Two Schedules: RMS and EDF



16

Let’s Modify the Example 

Slightly
• Increase A’s CPU requirement to 15 msec

• The system is still schedulable

975.0
50

5

40

15

30

15
=++



17

RMS and EDF



18

RMS failed, why?

• It has been proven that RMS is only 

guaranteed to work if the CPU utilisation is 

not too high

– For three tasks, CPU utilisation must be less 

than 0.780

• We were lucky with our original example

)12(
1

1

−≤∑
=

m

m

i i

i
m

P

C



19

EDF

• EDF always works for any schedulable set 

of tasks, i.e. up to 100% CPU utilisation

• Summary

– If CPU utilisation is low

• Can use RMS which is simple and easy to 

implement

– If CPU utilisation is high

• Must use EDF


