I/O Management
Intro

Chapter 5

THI UNIVIRSITY OF
NEW SOUTH WALES

Categories of 1/0 Devices (by usage)

* Human readable

— Used to communicate with the user

— Printers, Video Display, Keyboard, Mouse
* Machine readable

— Used to communicate with electronic equipment

— Disk and tape drives, Sensors, Controllers, Actuators
» Communication

— Used to communicate with remote devices
— Ethernet, Modems, Wireless

THI UNIVIRSITY OF
NEW SOUTH WALES

Sample Data Rates

THI UNIVIRSITY OF
NEW SOUTH WALES

I/0O Devices

» There exists a large variety of /0 devices:
— Many of them with different properties

— They seem to require different interfaces to
manipulate and manage them

* We don’t want a new interface for every device

« Diverse, but similar interfaces leads to code
duplication

* Challenge:
— Uniform and efficient approach to /O

THI UNIVIRSITY OF
NEW SOUTH WALES

Differences that Impact I/O Device
Handling
» Data rate

— May be differences of several orders of
magnitude between the data transfer rates

— Example: Assume 1000 cycles/byte 1/10
» Keyboard needs 10 KHz processor to keep up
+ Gigabit Ethernet needs 100 GHz processor

THI UNIVIRSITY OF
NEW SOUTH WALES

LSt

Differences that Impact I/O Device
Handling
» Application

— Disk used to store files requires file-
management software
» May provide feature specific to function, e.g. non-
volatile RAM.
— Disk used to store virtual memory pages

needs special hardware and software to
support it

— Terminal used by system administrator may
have a higher priority

THI UNIVIRSITY OF
NEW SOUTH WALES

Differences that Impact 1/0 Device
Handling

Complexity of control

Unit of transfer

— Data may be transferred as a stream of bytes
for a terminal or in larger blocks for a disk

» Data representation
— Encoding schemes

* Error conditions

— Devices respond to errors differently
» Expected error rate also differs

THI UNIVIRSITY OF
NEW SOUTH WALES

Controllers

Vi AEIrEss 5

Arccevssing I(O

g st

[| My

£ norts

For,

— -
&) oy
a) Separate I/O and memory space
— 1/O controller registers appear as I/0 ports
— Accessed with special I/O instructions
b) Memory-mapped I/O
— Controller registers appear as memory
— Use normal load/store instructions to access
c) Hybrid
— 86 has both ports and memory mapped /O

THI UNIVIRSITY OF
NEW SOUTH WALES

Bus Architectures

CPU reads and writes of memory
go over this high-bandwidth bus

CPU Memory| 110 CPU [[Memory, 1o
This memory port is
All adzr\e/soses (:emorv Bus to allow I/O devices
an) go here access to memory
(@) (b)

(a) A single-bus architecture
(b) A dual-bus memory architecture

THI UNIVIRSITY OF
NEW SOUTH WALES

Direct Memory Access

» Takes control of the bus from the CPU to
transfer data to and from memory over the
system bus

» Reduced number of interrupts occur

— No expensive context switches

CPU Memory| Device

| It I

THI UNIVIRSITY OF
NEW SOUTH WALES

Interrupts Revisited

Interrupt 1. Device is finished

CPU 3. GPU acks controller

interrupt Disk

A Keyboard

—
e 4—‘ Clock
2. Controller — — ‘
1N TesibiE | Printer
[e]

Devices connected to an Interrupt Controller via lines on
an 1/O bus (e.g. PCI)

Interrupt Controller signals interrupt to CPU and is
eventually acknowledged.

Exact details are architecture specific.

THI UNIVIRSITY OF
NEW SOUTH WALES

DMA

» Cycle stealing is used to transfer data on the system bus
— The instruction cycle is suspended so data can be transferred

— The CPU pauses one bus cycle
« CPU Cache can hopefully avoid such pauses by hide DMA bus
transactions
— Cycle stealing causes the CPU to execute more slowly
« Still more efficient than CPU doing transfer itself

Very Simplified Model of Cycle
Stealing

L LS L LS L SystemBus Oycles

Bus Cycles - CPU
’—‘ ’—‘ Bus Cycles - DMA

12

THI UNIVIRSITY OF
NEW SOUTH WALES

DMA

» Commonly burst-mode is used
— CPU uses several consecutive cycles to load entire
cache line
— DMA writes (or reads) a similar sized burst
— Reason: More efficient (less cycles overall) to transfer
a sequence of words than a word at a time.

« No bus arbitration, read/write setup, or addressing cycles
required after first transfer.

» Number of required busy cycles can be cut by

— Path between DMA module and 1/0O module that does
not include the system bus

HI UNIVIRSITY OF 13
NEW SOUTH WALES

Interrupt-Driven 1/O

Lssue Read JCPU — 1O

10 modute i~ etse

» Processor is interrupted when 1/0
module (controller) ready to orvo
exchange data

* Processor is free to do other work

* No needless waiting

. from 1O /0 — CPU

» Consumes a lot of processor time Lo
because every word read or
written passes through the
processor

/0 — CPU

Error

HIE UNIVIRSITY OF Next instruction
id S
BRI (b) Interrupt-diiven 1O

command to Do something

Read Status [- - - [ntermupt

condition

PU — memory

The Process to Perform DMA
Transfer

1. device driver is told to
transfer disk data to

buffer at address X CPU
5. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C
increasing memory bytes from disk to buffer
address and decreasing at address X
CuntiC=0
6. when C =0, DMA DI — X
interrupts CPU to signal controller == CPU memory bus memory | buffer
transfer completion

. PCl bus

3. disk controller initates
DWIA transfor
IDE disk controller | , ey controler sends
each byte to DMA

controller

HI' UNIVIRSITY OF 17
NEW SOUTH WALES

NEW SOUTH WALES

Issue Read
command to ICPU =10

Programmed 1/O

1/0 module

Read status
of L0 O — CPU
module

Also called polling, or busy
waiting

1/0 module (controller) performs
the action, not the processor

Sets appropriate bits in the 1/0
status register

No interrupts occur

Processor checks status until
operation is complete
— Wastes CPU cycles

Error
condition

Read word
from V'O IUO—)C[‘LI

Module

into memory

e |cm —

THI UNIVIRSITY OF

Next instruction

L) LO

* An interrupt is sent when

* The processor is only

Direct Memory Access

» Transfers a block of data

. T PU — DMA
directly to or from memory | it o sometin
ol module @7~ T else

Read status
of DMA
module

the task is complete

=== Interrupt

DMA — CPU

involved at the beginning
and end of the transfer

Next instruction

(c) Direct memory access

THIL UNIVIRSITY OF 16
NEW SOUTH WALES

Bus

Evolution of the |/O Function

* Processor directly controls a peripheral

device

— Example: CPU controls a flip-flop to
implement a serial line

THI UNIVIRSITY OF 18
NEW SOUTH WALES

Evolution of the I/O Function

« Controller or I/O module is added
— Processor uses programmed /O without interrupts
— Processor does not need to handle details of external devices
— Example: A Univeral Asynchronous Receiver Transmitter
« CPU simply reads and writes bytes to I/O controller
« 1/O controller responsible for managing the signalling

‘ CPU ‘ Memory ‘ UART }—
Serial
Line
Bus
THI UNIVIRSITY OF 19

NEW SOUTH WALES

Evolution of the I/O Function

 Controller or I/O module with interrupts

— Processor does not spend time waiting for an
I/O operation to be performed

Interrupt
Line
‘ CPU ‘ Memory ‘ UART }—
Serial
Line
Bus
THI UNIVIRSITY OF 20

Evolution of the I/O Function

* Direct Memory Access

— Blocks of data are moved into memory
without involving the processor

— Processor involved at beginning and end only

Interrupt
Line
‘ CPU ‘ Memory ‘ UART }—
Serial
U A
Bus

THI UNIVIRSITY OF 21
NEW SOUTH WALES

NEW SOUTH WALES

Evolution of the I/O Function

* 1/0 module has a separate processor

— Example: SCSI controller

+ Controller CPU executes SCSI program code out
of main memory

Interrupt

Line

SCSI
CPU | |Memory Controller
SCsSiI
oo i o

THIL UNIVIRSITY OF 22
NEW SOUTH WALES

Evolution of the I/O Function

* |/O processor

— 1/0O module has its own local memory, internal bus,
etc.
— lts a computer in its own right

— Example: Myrinet Multi-gigabit Network Controller
Interrupt

. —
Line

Myrinet
Controller

Network
Cable

THI UNIVIRSITY OF 23
NEW SOUTH WALES

