Virtual Memory

THI UNIVIRSITY Of 1
NEW SOUTH WALES

Virtual Address
Space

« Virtual Memory
— Divided into equal-
sized pages
— A mapping is a
translation between
« Apage and a frame
« A page and null
— Mappings defined at
runtime
« They can change
— Address space can
have holes
— Process does not
have to be
contiguous in
memory

Paging

+ Physical Memory
— Divided into
equal-sized
frames

Physical

7
6
5
4
3
2
1
0 Address Space 2

Virtual Address

Typical Address

Virtual Address

Programmer’s perspective:
logically present

pace Space - System’s perspective: Not
14 14 :
Kermel /13 Space LaYOUt i3] |L_mapped, data on disk
12| Stack region is at top, * A process may
Stack 111 and can grow down be only partially
[10] + Heap has free space to resident
Shared K | grow up — Allows OS to
Libraries B « Text is typically read-only swap |rt1d|:j/!d|l:al
BSS r\l « Kernel is in a reserved, _ 22%22 nc;enlwsory
(heap) % protected, sh.ared region for infrequently
* 0-th page tqyplcally not used data & code
Data T\ used, why? + What happens if
T t we access non-
ex .
r/ reS|dent7 Physical
“e'wmmmgg 3 memory: Address Space
| Ge
Proc 1 Address Proc 2 Address
Space | m= ! e Space
15| ! 1
Page FaUItS Currently ' 13 ! %
» Referencing an invalid page triggers a page fault running ~~—___| 13 . 13
« An exception handled by the OS : E : Physical ﬁ
» Broadly, two standard page fault types ! (9] || Addross Spage o
— lllegal Address (protection error) 1 S
« Signal or kill the process . 10| 15
— Page not resident H o] 14 |14
« Get an empty frame 1 ’ 8 3
« Load page from disk : 7 :H
« Update page (translation) table (enter frame #, set valid bit, etc.) 1 1 15 1
« Restart the faulting instruction : i Disk
* Note: Some implementations store disk block numbers ! 15|
of non-resident pages in the page table (with valid bit Memory ! 1 4
Unset) Access | 13
12
1
W BT A ° 3 MO SSUTRARS 0] ¢

Virtual Address o
Space
Page
Table [
» Page table for I
resident part of N
address space L
7 L
6 E—
5 13
4 L
3 11
2 E—
1 Physical |7
0 Address Space | 7
e |

Shared Pages

» Shared code

— Single copy of code
shared between all
processes executing it

— Code must be “pure”
(re-entrant), i.e. not
self modifying

— Code must appear at
same address in all
processes

» Private code and data
— Each process has own
copy of code and data
— Code and data can
appear anywhere in
the address space

THI UNIVIRSITY Of 8
NEW SOUTH WALES

Proc 1 Address
Space

Proc 2 Address
Space

115
14|
113]

12 Physical
4l Address Spade
B
19
19|
18]

7]
16|

Two (or more)
processes
running the

same program
and sharing

the text section

Page

Page
Table 9

'+ Table

EﬁNM*HHHHHOH\

[N [TTTTT T] []

Page Table Structure -

» Page table is (logically) an array of 5
frame numbers -
— Index by page number]

» Each page-table entry (PTE) also has

other bits —
Caching
disabled Modified Present/absent
% | | ‘ ‘ | Page frame number 4
Referenced Protection 7
Page 2
THI UNIVIRSITY OF Table 19

NEW SOUTH WALES

PTE bits

* Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
* Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
+ Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
« Caching bit
— Useto jndicale processor should bypass the cache when
accessing memory
« Example: to access device registers or memory

THI UNIVIRSITY Of 11
NEW SOUTH WALES

Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

THI UNIVIRSITY Of 12
NEW SOUTH WALES

Virtual Address

Fase? ot

Page Table

Page
Frame

[Frame ?

LY

Paging Mechanism Main Memory

Figure 8.3 Address Translation in a Paging System

Page Tables

* Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
» Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
« Main memory?

THI UNIVIRSITY Of 14
NEW SOUTH WALES

Page Tables

» Page tables are implemented as data structures in main
memory

» Most processes do not use the full 4GB address space
- eg., 0.1-1MBtext, 0.1 — 10 MB data, 0.1 MB stack

» We need a compact representation that does not waste
space
— But is still very fast to search

« Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

THI UNIVIRSITY Of 15
NEW SOUTH WALES

womy lhes
Two-level Page I l
: ERAE
Table / iR
2nd —|evel ;i‘ =
page tables Temd e
representing s Es O :
unmapped J I
pages are not é*”‘]ﬂﬂﬁ—ﬁm %1QI_L$;61 ¥
allocated = 8
— Nullin the ;;
top-level R
page table < s
e g P
& Gl
b @"*ﬂ
K E g
El e ERL
4 E
“ Wby

THI UNIVIRSITY Of
NEW SOUTH WALES

Two-level Translation

Page
Fram

N

Program Paging Mechanism Main Memory

Alternative: Inverted Page Table

Virtual Address
1 bits

2D meeﬂ Offset

IS
Inverted Page Table Real Address
(one entry for each
physical memory frame)
THI 19

NEV
Figure 8.6 Inverted Page Table Structure

Inverted Page Table (IPT)

» “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

» Algorithm
— Compute hash of page number
— Use this to index into inverted page table
— Match the page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault

THI UNIVIRSITY Of 20
NEW SOUTH WALES

Properties of IPTs

« IPT grows with size of RAM, NOT virtual address space

« Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

+ Saves a vast amount of space (especially on 64-bit
systems)
» Used in some IBM and HP workstations

THI UNIVIRSITY Of 21
NEW SOUTH WALES

W=l

VM Implementation Issue

* Problem:

— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=lIntolerable performance impact!!

+ Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

THI UNIVIRSITY Of 22
NEW SOUTH WALES

TLB operation

. Secondary
ain Memory or-
Virtual Address Maln Memory Memory

Page # | Offset

Translation
ookaside Buffer

=
=

Page Table

TLB hit

TLB miss

Real Address N

Page fault

Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB

« If matching PTE found (TLB hit), the address is
translated

» Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If ondisk, swap it in
« Otherwise, allocate a new page or raise an exception

THI UNIVIRSITY Of 24
NEW SOUTH WALES

TLB properties

» Page table is (logically) an array of frame
numbers
» TLB holds a (recently used) subset of PT entries
— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W

THI UNIVIRSITY O 25
NEW SOUTH WALE

TLB properties

» TLB may or may not be under OS control

— Hardware-loaded TLB
+ On miss, hardware performs PT lookup and reloads TLB
« Example: Pentium

— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB
« Example: MIPS

» TLB size: typically 64-128 entries
» Can have separate TLBs for instruction fetch
and data access

» TLBs can also be used with inverted page tables
(and others)

THI UNIVIRSITY Of 26
NEW SOUTH WALES

TLB and context switching
» TLB is a shared piece of hardware
» Page tables are per-process (address space)
» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate
all entries)
+ high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
+ called a tagged TLB
+ used (in some form) on all modern architectures
 TLB entry: ASID, page #, frame #, valid and write-protect
bits

THI UNIVIRSITY Of 27
NEW SOUTH WALES

MIPS R3000 TLB

Kl 12 n 6 5

‘ YPN | ASID ‘ 0

EntryHi Register (TLB key fields)

kal 12 n 10 9 8 T 0

‘PFN |N |D |v|e|o

Entryl.o Register (TLB data fields)
* N = Not cacheable + V=valid bit
+ D =Dirty = Write protect ~ * 64 TLB entries
+ G = Global (ignore ASID « Accessed via software through

) Cooprocessor 0 registers
in lookup) — EntryHi and EntryLo

THI UNIVIRSITY Of 30
NEW SOUTH WALES

Simplified Components of VM
TLB effect Svst
Virtual Address ys em Page Tables for 3
. Spaces (3 processes) processes rame Table
+ Without TLB — o Fae e
— Average number of physical memory R 'IH “
references per virtual reference XZ@“‘
=2 CPU
« With TLB (assume 99% hit ratio) 2 3 e
— Average number. of physical memory Frame Pool
references per virtual reference
=.99*1+0.01*2
=1.01 B
Physical Memory
THI UNIVIRSITY OF 28 THI UNIVIRSITY OF 29
NEW SOUTH WALES NEW SOUTH WALES
OxFFFFFFFF

R3000 Address
Space LayOUt 0xC0000000

* kuseg:
— 2 gigabytes 0xA0000000]

— TLB translated (mapped)

— Cacheable (depending on ‘N’ bit) kseg0

— user-mode and kernel mode 0x80000000
accessible

— Page size is 4K

kseg2

kuseg

THI UNIVIRSITY Of
NEW SOUTH WALES

0x00000000

R3000 Address
Space Layout

— Switching processes
switches the translation

OXFFFFFFFF

0xC000000

0xA0000000|

R3000 Address
Space Layout

» ksegl:
— 512 megabytes
— Fixed translation window to
physical memory

« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

« TLB not used
— NOT cacheable
— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)

0xC0000000

0x80000000

THI UNIVIRSITY Of
NEW SOUTH WALES

Physical Memory

0x00000000

(page table) for kuseg
0x80000000
Proc 1 Proc 2 Proc 3
kuseg kuseg kuseg
0x00000000
[F333333333

R3000 Address
Space Layout

» ksegO:
— 512 megabytes
— Fixed translation window to
physical memory
« 0x80000000 - Ox9fffffff virtual =
0x00000000 - 0x1fffffff physical
« TLB not used
Cacheable
Only kernel-mode accessible
— Usually where the kernel code is
placed

THI UNIVIRSITY Of
NEW SOUTH WALES

Physical Memory

OxfffEEEFE

0xC0000000

0xA0000000

0x80000000

kuseg

0x00000000

R3000 Address
Space Layout

» kseg2:
— 1024 megabytes
— TLB translated (mapped)
— Cacheable
« Depending on the ‘N’-bit
— Only kernel-mode accessible

— Can be used to store the virtual
linear array page table

THI UNIVIRSITY Of
NEW SOUTH WALES

OxffEEEEFE

0xC0000000

0xA0000000

0x80000000

kuseg

0x00000000

