File Management

COMP3231
Operating Systems

'! THE UNIVERSITY OF
NEW SOUTH WALES

References

» Textbook
— Tanenbaum, Chapter 6

E=
—-il?’ THE UNIVERSITY OF
- NEW SOUTH WALES

Files

» Named repository for data

— Potentially large amount of data

« Beyond that available via virtual memory
— (Except maybe 64-bit systems)

— File lifetime is independent of process lifetime
— Used to share data between processes

« Convenience

— Input to applications is by means of a file
— Output is saved in a file for long-term storage

1 THE UNIVERSITY OF 3
NEW SOUTH WALES

File Management

* File management system is considered
part of the operating system
— Manages a trusted, shared resource

— Bridges the gap between:
* low-level disk organisation (an array of blocks),
« and the user’s views (a stream or collection of
records)

* Also includes tools outside the kernel

— E.g. formatting, recovery, defrag, consistency,
and backup utilities.

gL THE UNIVERSITY OF 4
;f‘a- NEW SOUTH WALES

Obijectives for a
File Management System

« Provide a convenient naming « Optimise performance
system for files

* Provide uniform 1/O support for
a variety of storage device

* Minimize or eliminate the
potential for lost or destroyed

types data
— Same file abstraction * Provide I/O support and
« Provide a standardized set of access control for multiple
/O interface routines users
— Storage device drivers Support system administration
interchangeable (e.g., backups)
« Guarantee that the data in the
file are valid

File Names

* File system must provide a convenient naming
scheme

— Textual Names

— May have restrictions

* Only certain characters
— E.g. no '/’ characters

 Limited length
* Only certain format
— E.gDOS, 8 +3

— Case (in)sensitive

— Names may obey conventions (.c files or C files)
* Interpreted by tools (UNIX)
* Interpreted by operating system (Windows)

==

m - THE UNIVERSITY OF
s NEW SOUTH WALES

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Typical file extensions.

) THE UNIVERSITY OF
m NEW SOUTH WALES

=

< i
W[=FE
3

1 Byte

Ve

(a)

File Structure
From OS’s perspective

1 Record
re
Ant Fox Pig
Cat || Cow || Dog Goat Lionl] Owl Pony || Rat |]Worm
Hen || Ibis [|Lamb

(b)

(c)

* Three kinds of files
— byte sequence
— record sequence

— free

File Structure

+ Stream of Bytes * Records

— OS considers a file to — Collection of bytes
be unstructured treated as a unit

. SlmpllfleS flle ° Examdple: employee
management for the recor_
0S — Operations at the level
Applicat of records (read_rec,

— Applications can write_rec)

Impose their own
structure

— Used by UNIX,
Windows, most
modern OSes

— File is a collection of
similar records

— OS can optimise
operations on records

B THE UNIVERSITY OF 9
“‘a- NEW SOUTH WALES

File Structure

» Tree of Records
— Records of variable length
— Each has an associated key
— Record retrieval based on key
— Used on some data processing systems (mainframes)

==
el THE UNIVERSITY OF 10
- NEW SOUTH WALES

File Types

* Regular files
« Directories

* Device Files
— May be divided into
« Character Devices — stream of bytes
« Block Devices
« Some systems distinguish between regular file types

— ASCII text files, binary files
« At minimum, all systems recognise their own executable

file format
— May use a magic number

=2
LRl] THE UNIVERSITY OF 11
i NEW SOUTH WALES

’<7 Header

(a) An executable file (b) An archive (libxyz.a)

File Types

Magic number

Text size

/

Data size

BSS size

Symbol table size

Entry point

Flags

Text

Data

Relocation
bits

Symbol
table

Module
name
Header
Date
Object Owner
module
Protection
Size
Header
Object
module
Header
Object
module

(@)

(b)

12

File Access

« Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up
— convenient when medium was mag tape

 Random access
— bytes/records read in any order
— essential for data base systems

— read can be ...
* move file pointer (seek), then read or ...
» each read specifies the file pointer

«]- NEW SOUTH WALES

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCllI/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Possible file attributes

Typical File Operations

1. Create 7. Append
2. Delete 8 Seek

3. Open 9. Get
4.Close attributes
5. Read 10.Set

6. Write Attributes

11.Rename

E=
LR THE UNIVERSITY OF 15
e M NEW SOUTH WALES

&
s

An Example Program Using File System Calls
(1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argvl]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT _MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])

{
int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

T
el THE UNIVERSITY OF 16
é NEW SOUTH WALES

An Example Program Using File System Calls
(2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_ fd, buffer, rd__count); /> write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */
}
/* Close the files */
close(in_fd);
close(out_fd);
if (rd__count == 0) /* no error on last read */
exit(0);
else
exit(5); /* error on last read */
B }
B THE UNIVERSITY OF 17

NEW SOUTH WALES

Memory-
mapped files
and paging

Memory | [
mapped
file —

B
g2 THE UNIVERSITY OF
NEW SOUTH WALES

||
geg

5
4
3
-

14| |6

91810

Disk

Physical
Address Space

18

Memory-Mapped Files

 Avoids translating from on-disk format to in-
memory format (and vice versa)
— Supports complex structures
— No read/write systems calls
— File simply (paged or swapped) to file system
— Unmap when finished

 Problems

— Determining actual file size after modification
« Round to nearest whole page (even if only 1 byte file)
— Care must be taken if file is shared,

« E.g. one process memory-mapped and one process
read/write syscalls

— Large files may not fit in the virtual address space

-- THE UNIVERSITY OF 19

File Organisation and Access
Programmer’s Perspective

« Given an operating system supporting
unstructured files that are a stream-of-bytes,

how should one organise the contents of the
files?

=
LI THE UNIVERSITY OF 20
P NEW SOUTH WALES

File Organisation and Access
Programmer's Perspective

« Performance
considerations:

— File system performance
affects overall system
performance

— Organisation of the file
system affects
performance

— File organisation (data
layout) affects performance

« depends on access
patterns

=z
-H- THE UNIVERSITY OF
é NEW SOUTH WALES

« Possible access patterns:
— Read the whole file

— Read individual blocks or
records from a file

— Read blocks or records
preceding or following the
current one

— Retrieve a set of records

— Write a whole file
sequentially

— Insert/delete/update
records in a file

— Update blocks in a file

21

Criteria for File Organization

« Rapid access
— Needed when accessing a single record
— Not needed for batch mode

« Ease of update
— File on CD-ROM will not be updated, so this is not a concern

« Economy of storage

— Should be minimum redundancy in the data

— Redundancy can be used to speed access such as an index
« Simple maintenance

 Reliability

==
el THE UNIVERSITY OF 22
- NEW SOUTH WALES

Classic File Organisations

» There are many ways to organise a files
contents, here are just a few basic
methods
— Unstructured Stream (Pile)

— Sequential
— Indexed Sequential
— Direct or Hashed

=
-H- THE UNIVERSITY OF
é NEW SOUTH WALES

23

Unstructured Stream

 Data are collected in
the order they arrive

« Purpose is to
accumulate a mass of
data and save it

 Records may have

different fields
e NO StrUCture Variable-denzth meomrls
i Varlable setof felds
 Record access is by S Rsic
exhaustive search (@) Pile File

Figure 12.3 Common File Organizations

Unstructured Stream Performance

» Update
— Same size record -
okay
— Variable size - poor
* Retrieval
— Single record - poor
— Subset — poor

. Varabke-leneth s
- EXhaUStlve = Okay ‘-.-';:E::hh.' .-..'II:I;1EI IIT.::Jar

Chrvectos leal order

(a) File File

< i
W[=FE
3

Figure 12.3 Common File Organizations

The Sequential File

e Fixed format used for
records

« Records are the same
length

* Field names and lengths
are attributes of the file

* One field is the key field
— Uniquely identifies the

Fixeddenglh ecorls
record Fixed st of Mekds o Mxed onder
_ Records are Stored in key f‘l-L"..]'Jl.'ll":'.l| order ased oo key fheld
Sequence (b} Secuential File

e T
Figure 12.3 Common File Organizations

Sequential File Update

* New records are placed in a log file or
transaction file

« Batch update is performed to merge the
log file with the master file

- THE UNIVERSITY OF
NEW SOUTH WALES

27

The Sequential File

« Update

— Same size record -
good

— Variable size — No

» Retrieval
— Single record - poor
— Subset — poor
. Fixeddenglh ecorls
- EXhaUStlve - Okay Frxed st of flields o Nxed oxder

Sequential order based oa k2y ekl

(b} Secuential File

e 1 S
Figure 12.3 Common File Organizations

Indexed Sequential File

A 4

Main

 Index provides a lookup File
capability to quickly reach
the vicinity of the desired
record Index

— Contains key field and a
pointer to the main file

— Indexed is searched to find
highest key value that is Key /
equal or less than the
desired key value

— Search continues in the
main file at the location
indicated by the pointer

A 4

A 4

A 4

File Ptr

A 4

A 4

- THE UNIVERSITY OF 29

Comparison of sequential and

Indexed sequential lookup

« Example: a file contains 1 million records

* On average 500,00 accesses are required
to find a record in a sequential file

 |f an index contains 1000 entries, it will
take on average 500 accesses to find the
key, followed by 500 accesses in the main
file. Now on average itis 1000 accesses

- THE UNIVERSITY OF 30
NEW SOUTH WALES

Indexed Sequential File Update

> Main
* New records are added File
to an overflow file
e Record in main file that Index

precedes it is updated -
to contain a pointer to

the new record w1 —
ey
* The overflow is merged File P
with the main file during
a batch update
Overflow
=) File j
1- THE UNIVERSITY OF < 39

NEW SOUTH WALES

Indexed Sequential File

> Main
° Update File
— Same size record - >
gOOd Index
— Variable size - No 1
 Retrieval
— Single record - good <oy 1
— Subset — poor File Ptr
— Exhaustive - okay
-fﬂ- THE UNIVERSITY OF 32

NEW SOUTH WALES

The Direct, or Hashed File

Hashed
File

» Key field required for each
record

« Key maps directly or via a
hash mechanism to an
address within the file Key —1Hash

» Directly access a block at
a the known address

=z
-H- THE UNIVERSITY OF
é NEW SOUTH WALES

. L “ LH

3

The Direct, or Hashed File

Hashed
File

» Update

— Same size record - good

— Variable size — No

 Fixed sized records used Key —fHash

» Retrieval

— Single record - excellent

— Subset — poor

— Exhaustive - poor

==
||
2

. “ LH

L] THE UNIVERSITY OF 4

NEW SOUTH WALES

File Directories

« Contains information about files
— Attributes
— Location
— Ownership

 Directory itself is a file owned by the
operating system

* Provides mapping between file names and
the files themselves

BT THE UNIVERSITY OF 35

| NEW TH WALES
E-4 SOU

Simple Structure for a Directory

* List of entries, one for each file

« Sequential file with the name of
the file serving as the key

* Provides no help in organising the
files

 Forces user to be careful not to
use the same name for two .

different files Root directory

B

- -x:;x,.'q THE UNIVERSITY OF 36
i NEW SOUTH WALES

Two-level Scheme for a
Directory

One directory for each user and a master directory

Master directory contains entry for each user
— Provides access control information

Each user directory is a simple list of files for that user
Still provides no help in structuring collections of files

-!—F{oot directory

User
directory

37

Hierarchical, or Tree-Structured
Directory

« Master directory with user directories
underneath it

« Each user directory may have subdirectories

and files as entries
*—Root directory

User
directory_ |

=z
-H- THE UNIVERSITY OF
é NEW SOUTH WALES

Hierarchical, or Tree-Structured

Directory

 Files can be located by following a path
from the root, or master, directory down
various branches

— This is the absolute pathname for the file

« Can have several files with the same file

name as long as they have unigue path
names

L] THE UNIVERSITY OF 39
NEW SOUTH WALES

bin

etc

bin [<— Root directory
etc
lib
usr
tmp _\
lib usr tmp
ast
jim
lib
ast lib jim

. —~— Jusr/jim
dict.

40

Current Working Directory

» Always specifying the absolute pathname
for a file is tedious!
* Introduce the idea of a working directory

— Files are referenced relative to the working
directory

« Example: cwd = /home/kevine
.profile = /nome/kevine/.profile

==
B | THE UNIVERSITY OF 41
%S| NFW SOUTH WALES

Relative and Absolute
Pathnames

« Absolute pathname
— A path specified from the root of the file system to the file

* A Relative pathname
— A pathname specified from the cwd

« Note: .’ (dot) and ‘.." (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine

../ ../etc/passwd

/etc/passwd
../kevine/../.././etc/passwd
Are all the same file

el THE UNIVERSITY OF 42
! NEW SOUTH WALES

Typical Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Opendir /. Link

4. Closedir 8. Unlink

43

Nice properties of UNIX naming

« Simple, regular format

— Names referring to different servers, objects,
etc., have the same syntax.
» Regular tools can be used where specialised tools
would be otherwise needed.

» Location independent

— Objects can be distributed or migrated, and
continue with the same names.

B THE UNIVERSITY OF 44

An example of a bad naming

convention

* From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BIN]JCAT_V.EXE;13

'! THE UNIVERSITY OF
NEW SOUTH WALES

45

File Sharing

 In multiuser system, allow files to be
shared among users

* Two issues
— Access rights
— Management of simultaneous access

46

Access Rights

* None
— User may not know of the existence of the file

— User is not allowed to read the user directory
that includes the file

« Knowledge

— User can only determine that the file exists
and who its owner is

=2
LRl] THE UNIVERSITY OF 47
i NEW SOUTH WALES

Access Rights

 Execution

— The user can load and execute a program but
cannot copy it

» Reading

— The user can read the file for any purpose,
including copying and execution

» Appending

— The user can add data to the file but cannot
modify or delete any of the file’s contents

B | THE UNIVERSITY OF 48

:\]- NEW SOUTH WALES

Access Rights

» Updating
— The user can modify, deleted, and add to the
file’s data. This includes creating the file,
rewriting it, and removing all or part of the
data
« Changing protection
— User can change access rights granted to
other users
* Deletion

— User can delete the file

LR | THE UNIVERSITY OF 49

f‘v- NEW SOUTH WALES

=2
]
-

Access Rights

 Owners
— Has all rights previously listed
— May grant rights to others using the following
classes of users
» Specific user
« User groups
« All for public files

- THE UNIVERSITY OF 50
NEW SOUTH WALES

Case Study:
UNIX Access Permissions

total 1704

drwxr—-x——-— 3 kevine kevine 4096 Oct 14 08:13 .
drwxr—-x——— 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr—-x——-— 2 kevine kevine 4096 Oct 14 08:12 backup
-rw—r————-— 1 kevine kevine 141133 Oct 14 08:13 eniac3. jpg
-rw—r————-— kevine kevine 1580544 Oct 14 08:13 wkll.ppt

* First Ietter file type
d for directories
- for regular files)

* Three user categories
user, group, and other

-- THE UNIVERSITY OF 51

UNIX Access Permissions

total 1704

drwxr—-x——-— 3 kevine kevine 4096 Oct 14 08:13 .
drwxr—-x——— 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr—-x——-— 2 kevine kevine 4096 Oct 14 08:12 backup
-rw—r————-— 1 kevine kevine 141133 Oct 14 08:13 eniac3. jpg
-rw—r————-— kevine kevine 1580544 Oct :13 wkll.ppt

. Three access rights per category
read, write, and execute

ArwXrwXrwx

user aroup other

= IL THE UNIVERSITY OF 52

UNIX Access Permissions

total 1704

drwxr—-x——-— 3 kevine kevine 4096 Oct 14 08:13 .
drwxr—-x——— 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr—-x——-— 2 kevine kevine 4096 Oct 14 08:12 backup
-rw—r————-— 1 kevine kevine 141133 Oct 14 08:13 eniac3. jpg
-rw—r————-— 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

« Execute permission for directory?

— Permission to access files in the directory
* To list a directory requires read permissions
 What about drwxr—x—x?

==
el THE UNIVERSITY OF 53
- NEW SOUTH WALES

UNIX Access Permissions

« Shortcoming
— The three user categories a rather coarse

* Problematic example
— Joe owns file foo.bar

— Joe wishes to keep his file private
 |Inaccessible to the general public

— Joe wishes to give Bill read and write access
— Joe wishes to give Peter read-only access

54

Simultaneous Access

* Most Oses provide mechanisms for users to
manage concurrent access to files
— Example: lockf(), flock() system calls

« Typically
— User may lock entire file when it is to be updated
— User may lock the individual records during the

update

« Mutual exclusion and deadlock are issues for

shared access

=
B THE UNIVERSITY OF 55
=il NEW SOUTH WALES

‘! THE UNIVERSITY OF
NEW SOUTH WALES

File Management |

COMP3231
Operating Systems

56

Implementing Files

File 7
8 logical & 3 4
blocks 2
4 2 /
3
2 0 5
1
0 1 6
Disk
P

Trade-off in physical block size

« Sequential Access
— The larger the block size, the fewer I/O operation
required
 Random Access

— The larger the block size, the more unrelated data
loaded.

— Spatial locality of access improves the situation

« Choosing the an appropriate block size is a
compromise

==
gL THE UNIVERSITY OF o8
@ NEW SOUTH WALES

Example Block Size Trade-off

1000 |- —_————————r————— — - — 1000
Disk space utilization \\

c

o 800 - —{ 80 8

0} ©

4 N
X 600 - — 60 5§
Q @
© o S
o 400 | 140 28

A 5

200 |- 20 ©

Data rate e
0 Py | I l I | 0
0O 128 256 512 1K 2K 4K 8K 16K O

Block size
« Dark line (left hand scale) gives data rate of a disk

* Dotted line (right hand scale) gives disk space efficiency
— All files 2KB (an approximate median file size)

==
el THE UNIVERSITY OF 59
- NEW SOUTH WALES

File System Implementation

- Entire disk -
Partition table Disk partition \
MBR
Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories

A possible file system layout

T
el THE UNIVERSITY OF o0
é NEW SOUTH WALES

Implementing Files

* The file system must keep track of
— which blocks belong to which files.
— in what order the blocks form the file
— which blocks are free for allocation

« Given a logical region of a file, the file system
must identify the corresponding block(s) on disk.

— Stored in file system metadata
« file allocation table (FAT), directory, I-node

« Creating and writing files allocates blocks on
disk
— How?

=2
LRl] THE UNIVERSITY OF 61
i NEW SOUTH WALES

Allocation Strategies

 Preallocation

— Need the maximum size for the file at the time of
creation

— Difficult to reliably estimate the maximum potential
size of the file

— Tend to overestimated file size so as not to run out of
space
* Dynamic Allocation
— Allocated in portions as needed

==
gL THE UNIVERSITY OF 62
@ NEW SOUTH WALES

==

Portion Size

Extremes
— Portion size = length of file (contiguous allocation)
— Portion size = block size

Tradeoffs

— Contiguity increases performance for sequential operations
— Many small portions increase the size of the metadata

required to book-keep components of a file, free-space, etc.

— Fixed-sized portions simplify reallocation of space

— Variable-sized portions minimise internal fragmentation
losses

- - THE UNIVERSITY OF
é NEW SOUTH WALES

63

Methods of File Allocation

» Contiguous allocation

— Single set of blocks is allocated to a file at the
time of creation

— Only a single entry in the directory entry
» Starting block and length of the file

 External fragmentation will occur

==
el THE UNIVERSITY OF 64
- NEW SOUTH WALES

Fille A

LI | NN NN NN

WA 1 2l A w7

File I

| sl |

|33 |m

directory
Fiile Name Start Bk Length
Fike A 2 3
Fik B 9 -
File O I8 &
File Iy L) 2
Fik E 26 3

Figure 12.7 Contiguous File Allocation

Bl NEVYV SUUIH VWALED

5

« Eventually, we will need compaction to
reclaim unusable disk space.

1 THE UNIVERSITY OF
NEW SOUTH WALES

66

directory

File A File Name Start Block Length
ofeny IR RSN o 4 File A 0 3
Fik B File I 3 5
O B A | ey
File C File I 16 3

1A el v us

Filke E File I}

) 1%

Z2 3

X7

== 12.8 Contiguous File Allocation (After Compaction

UINIVLRNOLL 1T I

B8 NEw SOUTH WALES

Methods of File Allocation

« Chained (or linked list) allocation

 Allocation on basis of individual block
— Each block contains a pointer to the next block in the chain

— Only single entry in a directory entry
« Starting block and length of file

* No external fragmentation
« Best for sequential files
— Poor for random access

« No accommodation of the principle of locality
— Blocks end up scattered across the disk

68

directory

File Name Start Block Lenpth

Fik K 1 3

* To Improve performance, we can run a
defragmentation utility to consolidate files.

1 THE UNIVERSITY OF 70
NEW SOUTH WALES

directory
Fide Mame Start BElock Length

File I¥ 0 5

=3 Figure 12.10 Chained Allocation (after consolidation)

= E NEW SOUTH WALES

Methods of File Allocation

 |ndexed allocation

— File allocation table contains a separate one-
level index for each file

~T
d
-T

ne index has one entry for each portion
located to the file

ne file allocation table contains block

number for the index

B

L] THE UNIVERSITY OF 79

NEW SOUTH WALES

directory

File ™ame Imcdex Blisck
Fik B 24
1
#
3
14
28

Fi&ure 12.11 Indexed Allocation with Block Portions

Rl THE UNIVEKRDITY UF e
Egefl NEFW SOUTH WALES

- directory

File ¥ Filke Name Inddex Blick
¥ 1 I.- '!|- 4 & &8 o
File B 24

g £ 7 " ol Y o
10 11 12
15 16 17

. Start Block Lengzth

20 21 22 | 3

23 4

[[]2 i i

sol] a e[[

%’Uﬁ]l.lz - Indexed Allocation with Variable-Length Portions
NEW SOUTH WALES
=

Indexed Allocation

« Supports both sequential and direct access to
the file

« Portions
— Block sized
» Eliminates external fragmentation

— Variable sized
» Improves contiguity
 Reduces index size

« Most common of the three forms of file allocation

B THE UNIVERSITY OF 75

UNIX |-node

File Attributes

Address of disk block O

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers

Y

Disk block

containing

additional
disk addresses

An example of indexed allocation

76

Implementing Directories

games iaﬁributes games i “ /
mail I attributes mail l |
news i attributes news i —
work i attributes work i \\

(a) (b) Data structure
containing the
attributes

« Simple fixed-sized directory entries
(a) disk addresses and attributes in directory entry
— DOS/Windows
(b) Directory in which each entry just refers to an i-node
__ — UNIX
-f“- THE UNIVERSITY OF 77

NEW SOUTH WALES

Fixed Size Directory Entries

 Either too small
— Example: DOS 8+3 characters

« Waste too much space
— Example: 255 characters per file name

=z
-H- THE UNIVERSITY OF
é NEW SOUTH WALES

78

Implementing Directories

File 1 entry length L Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry . . .
foit GHE P r o | Pointer to file 2's name N
file e c t , ,
b 9 d 9 File 2 attributes
L e 1 X - Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
p e r
o} n n e

| X
File 3 entry length

File 3 attributes

flolo| X

> Heap

o|o|]o|d|T

- | JI=|—]C|O]| =
olo v |B{a]|~|o
o|—|o|o|ea

2y

w

« Two ways of (ﬁ)andling long file narr(;)es in directory

(a) In-line
— (b) In a heap
-- THE UNIVERSITY OF 79

Implementing Directories

* Free variable length entries can create
external fragmentation in directory blocks

— Can compact when block is in RAM

==
gL THE UNIVERSITY OF 80
@ NEW SOUTH WALES

Shared Files

Files shared under different names

. Root directory

A B
@g sl ® [©
(&
0 © © ©
Shared file

File system containing a shared file

'! THE UNIVERSITY OF
NEW SOUTH WALES

=
|
#

81

Implementing Shared Files

« Copy entire directory entry (including file attributes)
— Updates to shared file not seen by all parties
— Not useful

« Keep attributes separate (in I-node) and create a new
entry (name) that points to the attributes (hard link)
— Updates visible
— If one link remove, the other remains (ownership is an issue)

« Create a special “LINK” file that contains the pathname
of the shared file (symbolic link, shortcut).
— File removal leaves dangling links
— Not as efficient to access
— Can point to names outside the particular file system
— Can transparently replace the file with another

==
el THE UNIVERSITY OF 82
é NEW SOUTH WALES

Shared Files

C's directory B's directory C's directory B's directory
\ \
/ \ / \
Owner =C Owner = Owner =C
Count = 1 Count = 2 Count = 1

O O O

(a) (b) (c)
(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

Free Disk Space Management

1 19T UIDN VIVLNRND. 1O, 17, 10

42 a 230 (> 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 / 482 / 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers

(a) Storing the free list on a linked list
(b) A bit map

=
|

=01 THE UNIVERSITY OF 84
il NEW SOUTH WALES

Bit Tables

 |Individual bits in a bit vector flags used/free
blocks

« 16GB disk with 512-byte blocks >4MB table
« May be too large to hold in main memory

« EXxpensive to search
— But may use a two level table

« Concentrating (de)allocations in a portion of the
bitmap has desirable effect of concentrating
access

« Simple to find contiguous free space

B
(T 1 THE UNIVERSITY OF 85
B NEW SOUTH WALES

Free Block List

* List of all unallocated blocks

 Manage as LIFO or FIFO on disk with
ends in main memory

« Background jobs can re-order list for better
contiguity

« Store in free blocks themselves
— Does not reduce disk capacity

B
LRl] THE UNIVERSITY OF 86

@ NEW SOUTH WALES
B2 SOU

Quotas

Open file table Quota table

Attributes Soft block limit

disk addresses Hard block limit

User =8

= Current # of blocks
Quota pointer — # Block warnings left e
> record

Soft file limit for user 8
Hard file limit

Current # of files

))
W
))
|9

File warnings left

)
U
)
L SY

Quotas for keeping track of each user’s disk use

B THE UNIVERSITY OF 88

