Chapter 3

Deadlocks

3.1. Resource

3.2. Introduction to deadlocks

3.3. The ostrich algorithm

3.4. Deadlock detection and recovery
3.5. Deadlock avoidance

3.6. Deadlock prevention

3.”7. Other 1ssues

Resources

« Examples of computer resources
— printers
— tape drives
— Tables in a database

* Processes need access to resources in reasonable
order

« Suppose a process holds resource A and requests
resource B
— at same time another process holds B and requests A
— both are blocked and remain so

EL] THE UNIVERSITY OF 2
8| NEW SOUTH WALES

Resources

« Deadlocks occur when ...
— processes are granted exclusive access to devices
— we refer to these devices generally as resources

* Preemptable resources
— can be taken away from a process with no ill effects

* Nonpreemptable resources
— will cause the process to fail if taken away

M]- NEW SOUTH WALES

Resources

e Sequence of events required to use a resource

1. request the resource
2. use the resource
3. release the resource

« Must wait if request is denied
— requesting process may be blocked
— may fail with error code

Example Resource usage

semaphore res_1, res_2; semaphore res_1, res_2;

void proc_A() { void proc_A() {
down (&res_1); down (&res_1);
down (&res_2); down (&res_2);
use_both_res () ; use_both_res();
up (&res_2); up (&res_2);
up (&res_1); up (&res_1);

} }

void proc_B() { void proc B() {
down (&res_1); down (&res_2);
down (&res_2); down (&res_1);
use_both res(); use_both res();
up (&res_2); up (&res_1);
up (&res_1); up (&res_2);

=
-H- THE UNIVERSITY OF
é NEW SOUTH WALES

Introduction to Deadlocks

* Formal definition :
A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause

« Usually the event is release of a currently held

resource
* None of the processes can ...
— run

— release resources
— be awakened

< i
[
geg

Four Conditions for Deadlock

1. Mutual exclusion condition
each resource assigned to 1 process or is available

2. Hold and wait condition
process holding resources can request additional

5. No preemption condition
previously granted resources cannot forcibly taken
away
+. Circular wait condition
« must be a circular chain of 2 or more processes

« each is waiting for resource held by next member of
the chain

==
el THE UNIVERSITY OF 7
o NEW SOUTH WALES

Deadlock Modeling

» Modeled with directed graphs
R © \@)/
(c)

(a) (b)
— resource R assigned to process A
— process B is requesting/waiting for resource S

— process C and D are in deadlock over resources T
and U
E=

- -z::s,_fq THE UNIVERSITY OF 8
i NEW SOUTH WALES

Deadlock

Strategies for dealing with Deadlocks
1. Just ignore the problem altogether
2. detection and recovery

. dynamic avoidance
careful resource allocation

+. prevention
* negating one of the four necessary conditions

gL THE UNIVERSITY OF
;f‘a- NEW SOUTH WALES

Deadlock Modeling

1. Arequests R
2. Brequests S
3. Crequests T
4. Arequests S
5. Brequests T
6. C requests R
deadlock

(d)

Request R
Request S
Release R
Release S

(@)

b

(h)

Request S
Request T
Release S
Release T

(b)

Request T
Request R
Release T
Release R

()

S s||T
(f) (9)

B B) (C
S S| (I

(i)

How deadlock occurs

Deadlock Modeling
©OO 00O QOO

4. C requests R
5. Areleases R
6. Areleases S

no deadlock

(k) (1 (m) (n)

S T R S R S T

(0) (p) (9)

Approach 1: The Ostrich Algorithm

Pretend there is no problem

Reasonable if
— deadlocks occur very rarely

— cost of prevention is high
« Example of “cost”, only one process runs at a time

UNIX and Windows takes this approach
It's a trade off between

— Convenience (engineering approach)
— Correctness (mathematical approach)

=2
]
-

- THE UNIVERSITY OF 12
NEW SOUTH WALES

Approach 2
Detection with One Resource of Each Type

5

O—[——{1— @—{r—
I S
1, J

U v
é<

—

(@) (b)

* Note the resource ownership and requests

* A cycle can be found within the graph, denoting
deadlock

-- THE UNIVERSITY OF 13
- NEW SOUTH WALES

What about resources with

multiple units?

* We need an approach for dealing with
resources that consist of more than a
single unit.

'! THE UNIVERSITY OF
NEW SOUTH WALES

14

Detection with Multiple Resources of Each
Type

Resources available
(A1, A2, A3= Am)

Resources in existence
(E1, E2, E3, Em)

Current allocation matrix

Request matrix

Ciy Gy Cpy - Gy Ry By Ry - Rim
21 22 23 " VYo R, 22 23 Rom
(t _Cn1 Cn2 CnS o Cnm_ _Rn1 I:{n2 RnS T an_
Row n is current allocation Row 2 is what process 2 needs

fo process n

Data structures needed by deadlock detection
algorithm

-- THE UNIVERSITY OF 15
- NEW SOUTH WALES

Note the following invariant

Sum of current resource allocation +
resources available = resources that exist

Zn: C,+A, =E,
=l

e L] THE UNIVERSITY OF 16
P NEW SOUTH WALES

Detection with Multiple Resources of Each
Type

= <
2 @
& & @‘3@ c::&% & 2 @‘a@ c::&%
. & f F.FC
X QY 7 @ QY & O
E=(4 2 3 1) A=(2 1 0 Q)
Current allocation matrix Request matrix
0 0 1 0 2 0 0 1
C=|12 0 0 1 R=]1 0 1 0O
0 1 2 0 2 1 0 0O

An example for the deadlock detection algorithm

E=
gL THE UNIVERSITY OF 17
- NEW SOUTH WALES

Detection Algorithm

1. Look for an unmarked process P, for
which the /th row of R is less than or
equal to A

2. If found, add the i-th row of C to A, and
mark Pi. Go to step 1

3. If no such process exists, terminate.
Remaining processes are deadlocked

=2
LRl] THE UNIVERSITY OF 18
i NEW SOUTH WALES

Example Deadlock Detection

E=4 2 3 1 A=2 1 0 0
0 0 1 0 20 0 1)
C=(2 0 0 1 R=|1 01 0
01 2 0, 2 1 0 0,

B THE UNIVERSITY OF
? NEW SOUTH WALES

19

Example Deadlock Detection

E=4 2 3 1 A=(2 1 0 0)
0 0 1 0) 2 0 0 1
C=/2 0 0 1 R=|1 0 1 0
0 1 2 0)) 2 1 0 0,
-fn- THE UNIVERSITY OF 20

Example Deadlock Detection

E=4 2 3 1
(0 1 0)
C=|2 0 1
:> \0 2 O)

B THE UNIVERSITY OF
% NEW SOUTH WALES

A=(2 2 2 0)

21

Example Deadlock Detection

E=4 2 3 1) A=(2 2 2 0)

=12 0 0 1| Do)

Example Deadlock Detection

E=(4 2 3 1) A=4 2 2 1)

==r=|2 0 0 || EEmm)
—

Example Deadlock Detection

E=@4 2 3 1 A=4 2 2 1
(0 0 1 0) (20 0 1)
m=t =2 0 0 1 R=|1 0 1 O
:> \O 1 2 O) \2 1 0 0/

S
- .;;?'y THE UNIVERSITY OF
: NEW SOUTH WALES

24

Example Deadlock Detection

E=4 2 3 1)
(0 1 0
mmt = 2 0 1

A=(4 2 2 1)
(2 0 0 1
R=|1 1 0

2 1 0 0,

Example Deadlock Detection

E=4 2 3 1
= (0 1 0)
mmf =] 2 0 1

A=4 2 3 1D
(2 0 1)
R=|1 1 0
2 0 0

26

Example Deadlock Detection

 Algorithm terminates with no unmarked
processes
— We have no dead lock

B | THE UNIVERSITY OF
. NEW SOUTH WALES

27

Example 2: Deadlock Detection

» Suppose, P3 needs a CD-ROM as well as
2 Tapes and a Plotter

E=4 2 31 A=Q2 1 0 0
(0 0 1 0) 2 0 0 1)
C=|2 0 0 1 R=[1 01 0

=z
w1 HE UNIVERSITY OF 28

Recovery from Deadlock

» Recovery through preemption
— take a resource from some other process
— depends on nature of the resource

* Recovery through rollback
— checkpoint a process periodically
— use this saved state
— restart the process if it is found deadlocked

B
B THE UNIVERSITY OF 29
=il NEW SOUTH WALES

Recovery from Deadlock

* Recovery through killing processes
— crudest but simplest way to break a deadlock
— kill one of the processes in the deadlock cycle
— the other processes get its resources

— choose process that can be rerun from the
beginning

==
B] THE UNIVERSITY OF 30
i NEW SOUTH WALES

Approach 3
Deadlock Avoidance

» |Instead of detecting deadlock, can we
simply avoid it?
— YES, but only if enough information is

available in advance.
« Maximum number of each resource required

=
-H- THE UNIVERSITY OF
? NEW SOUTH WALES

31

Deadlock Avoidance
Resource Trajectories

B ® u (Both processes
inter | | , finished)
Plotter l5 ; k\\\\

WO Process resource trajectories

- - THE UNIVERSITY OF 32

Safe and Unsafe States

» A state Is safe if
— The system is not deadlocked

— There exists a scheduling order that results in
every process running to completion, even if
they all request their maximum resources
Immediately

==
el THE UNIVERSITY OF 33
- NEW SOUTH WALES

Safe and Unsafe States

Note: We have 10 units
of the resource

Has Max Has Max Has Max Has Max Has Max
3 9 Al S 9 Al 3 9 Al 3 9 Al 3 9
Bl 2 4 B | 4 4 Bl1O0O | - Bl O - B 0 -
2 { C| 2 7 C|l 2 7 C| 7 1 C|loO -
Free: 3 Free: 1 Free:5 Free: 0 Free:7
(a) (b) (c) (d) (e)

B THE UNIVERSITY OF 34

Safe and Unsafe States

A requests one extra unit resulting in (b)

Has Max Has Max Has Max Has Max

3 9 4 9 4 9 4 9

Bl 2 4 B 2 4 B 4 4 B| —| —

2 7 2 7 2 7 2 7
Free: 3 Free: 2 Free: 0 Free: 4
(@) (b) (c) (d)

Demonstration that the state in b i1s not safe

==
el THE UNIVERSITY OF 35
- NEW SOUTH WALES

Safe and Unsafe State

« Unsafe states are not necessarily deadlocked
— With a lucky sequence, all process may complete

— However, we cannot guarantee that they will
complete (not deadlock)

« Safe states guarantee we will eventually
complete all processes

« Deadlock avoidance algorithm
— Only grant requests that result in safe states

==
gL THE UNIVERSITY OF
- NEW SOUTH WALES

36

Bankers Algorithm

* Modelled on a Banker with Customers
— The banker has a limited amount of money to loan customers
 Limited number of resources
— Each customer can borrow money up to the customer’s credit
limit
« Maximum number of resources required

 Basic Idea

— Keep the bank in a safe state

 So all customers are happy even if they all request to borrow up to
their credit limit at the same time.
— Customers wishing to borrow such that the bank would enter an
unsafe state must wait until somebody else repays their loan
such that the the transaction becomes safe.

==
el THE UNIVERSITY OF 37
é NEW SOUTH WALES

The Banker's Algorithm for a Single Resource

Has Max Has Max Has Max
Al O 6 A 1 6 A 1 6
BJ]lO 5 B 1 5 Bl 2 5
C| O 4 Cl 2 4 C | 2 4
D] O 7 D] 4 & D | 4 7
Free: 10 Free: 2 Free: 1

(a) (b) (c)

* Three resource allocation states
— safe

— safe

— unsafe

38

Banker's Algorithm for Multiple Resources

2 %

g5 LS g3 & LS

& QQ' oS S K QQ’ S S
Q‘K &fb‘ Q\ C,_)o O Q'K &Qy Q\ %0 O
Al3|]0]|1]1 Aj1|1]0|oO0 E = (6342)
Blo|1]|ofoO Blo|1[1]2 ifg‘?ggg;
cp111]11]0 Cj|3|1]|]0]|O
D110 1 DJofjO0|1]0
EJO|[O]O0]O El12|1]1]0
Resources assigned Resources still needed

Example of banker's algorithm with multiple
— resources

] - THE UNIVERSITY OF 39
- NEW SOUTH WALES

Bankers Algorithm is used

rarely in practice

* |t is difficult (sometime impossible) to know
In advance
—the resources a process will require
— the number of processes in a dynamic system

T
el THE UNIVERSITY OF 40
é NEW SOUTH WALES

Approach 4
Deadlock Prevention

Attacking the Mutual Exclusion Condition

* Not feasible in general

— Some devices/resource are intrinsically not
shareable.

g~}
LI THE UNIVERSITY OF 41
P NEW SOUTH WALES

Attacking the Hold and Wait
Condition

« Require processes to request resources before
starting
— a process never has to wait for what it needs

* Problems
— may not know required resources at start of run
— also ties up resources other processes could be using

« Variation:
— process must give up all resources
— then request all immediately needed

==
gL THE UNIVERSITY OF 42
@ NEW SOUTH WALES

Attacking the No Preemption Condition

* This is not a viable option

» Consider a process given the printer
— halfway through its job

— now forcibly take away printer
— 17?7

=
-H- THE UNIVERSITY OF
? NEW SOUTH WALES

Attacking the Circular Wait Condition

1. Imagesetter @
A

2. Scanner
3. Plotter

4. Tape drive i - \
5. CD Rom drive :

(a) (b)

* Numerically ordered resources

BL| THE UNIVERSITY OF 44

Attacking the Circular Wait

Condition

« The displayed deadlock

cannot happen

— If A requires 1, it must . .
acquire it before i
acquiring 2

— Note: If B has 1, all
higher numbered
resources must be free or A B
held by processes who
doesn’'t need 1

* Resources ordering is a
common technigue in

T T UNIVERSITYOF """ 45

Summary of approaches to
deadlock prevention

Condition Approach
« Mutual Exclusion * Not feasible
« Hold and Wait * Request resources
initially
+ No Preemption » Take resources away
« Circular Wait » Order resources
SR e UNIVERSITY OF 46

NEW SOUTH WALES

Nonresource Deadlocks

» Possible for two processes to deadlock

— each is waiting for the other to do some
task

« Can happen with semaphores

— each process required to do a down() on
two semaphores (mutex and another)

— If done in wrong order, deadlock results

==
B | THE UNIVERSITY OF 47
%S| NFW SOUTH WALES

Starvation

 Starvation is where the overall system makes progress, but
one or more processes never make progress.

— Example: An algorithm to allocate a resource may be to give to
shortest job first

— Works great for multiple short jobs in a system

— May cause long job to be postponed indefinitely, even though not
blocked

« Solution:
— First-come, first-serve policy

JEL| THE UNIVERSITY OF 48

