
Slide 1

Scheduling

COMP3231 Operating Systems

2005 S2
- Uniprocessor Scheduling

- Real-time Systems

- Multiprocessor Scheduling

- Case Studies

Slide 2

SCHEDULING

➜ Determination of which process is allowed to run

➜ What are the objectives?

• Maximise:

- CPU utilisation
- throughput (number of tasks completed per time unit)

• Minimise:

- Turnaround time (submission to completion)
- Waiting time (sum of time spent in Ready-queue)
- Response time (time from start of request to production of

first response)
• Fairness:

- every task should be handled eventually (no starvation)
- tasks with similar characteristics should be treated equally

different type of systems have different priorities!

TYPES OF SCHEDULING 1

Slide 3

TYPES OF SCHEDULING

➜ Long-term scheduling (admission scheduler):

The decision to admit a process, i.e., add its threads(s) to the
pool of threads that can execute (batch systems)

➜ Medium-term scheduling (memory scheduler):

The decision to suspend/resume processes, i.e., to control
the pool of threads whose process images are fully or
partially resident (mainly in the absence of VM)

➜ Short-term scheduling (CPU scheduler) :

The decision which ready thread will be dispatched next

Slide 4

CPU

Main

Memory

Arriving

job

Input

queue

Admission

scheduler

Memory

scheduler

Disk

CPU scheduler 

➜ Admission Scheduler:

• Controls the degree of multiprogramming: More threads ⇒
less CPU time

➜ Memory Scheduler

• Part of the swapping function, based on the need to
manage the degree of multiprogramming

➜ CPU scheduler

• Executes most frequently, invoked when an event occurs

CPU SCHEDULER 2



Slide 5

CPU SCHEDULER

Scheduling decisions are necessary when a thread

➀ switches from running to waiting state

• e.g., wait for I/O, other thread to terminate,...

➁ switches from running to ready

• e.g., interrupt

➂ switches from waiting to ready

• e.g., completion of I/O request

➃ terminates

Slide 6

PREEMPTIVE VS NONPREEMPTIVE SCHEDULING

Non-preemptive:

➜ Once a thread is in the running state, it will continue

➜ thread can monopolise the CPU

➜ co-operative multitasking: thread may yield CPU

Preemptive:
➜ Currently running thread may be interrupted and moved to the

ready state by the operating system

➜ requires hardware support (timer)

➜ incurs costs (additional context switches, data consistency)

➜ what about kernel routines?

SCHEDULING CRITERIA 3

Slide 7

SCHEDULING CRITERIA

➜ User-oriented

• Response Time

– Elapsed time between the submission of a request until
there is output.

• Waiting time

– Total time thread has been waiting in ready queue
• Turnaround time

– Amount of time to execute a particular thread
(from creation to exit)

➜ System-oriented

• Effective and efficient utilization of the processor
• Throughput

– number of completed threads per second

Slide 8

SCHEDULING CRITERIA

➜ Performance-related

• Quantitative
• Measurable such as response time and throughput

➜ Not performance related

• Qualitative
• Predictability

SCHEDULING CRITERIA 4



Slide 9

SCHEDULING CRITERIA

Different priorities for different types of systems:

➜ Batch

• non-preemptive policies, or preemptive with long quantums
are acceptable

• Throughput, turnaround time, CPU utilisation

➜ Interactive

• preemption essential
• response time, proportionality

➜ Realtime (hard & soft)

• preemption often not necessary for hard realtime systems
• meeting deadlines, predictability

Slide 10

CPU-I/O BURST CYCLE

Processes typically consist of alternating

➜ CPU bursts and

➜ I/O bursts

Duration and frequency of bursts vary greatly from process to
process
➜ CPU bound: few very long CPU bursts

➜ I/O bound: many, short CPU bursts

CPU-I/O BURST CYCLE 5

Slide 11

Long CPU burst

Short CPU burst

Waiting for I/O

(a) 

(b) 

Time

(a) CPU bound

(b) I/O bound

Burst length information can be used to optimise scheduling

Slide 12

PREDICTION OF CPU BURST LENGTH

➜ We don’t know length of next CPU burst, can we predict it?

Assumption: Next CPU burst will be similar length to previous
one.

Ti: actual length of ith burst
Si: estimated length of ith burst

—

➜ Simple averaging: Length of next burst is equal to average of
previous bursts:

Sn+1 =
1

n
∗

n∑

i=1

Ti

➜ or, to avoid recomputing the sum in every step

Sn+1 =
1

n
∗ Tn +

n − 1

n
Sn

PREDICTION OF CPU BURST LENGTH 6



Slide 13

➜ Exponential averaging: Recent observations are more
important than old ones, we want to give them more weight:

Sn+1 = α ∗ Tn + (1 − α)Sn

for 0 < α < 1

➜ The larger α, the less weight is given to older observations

Sn+1 = αTn + (1 − α)αTn−1 + (1 − α)2αTn−2 + . . .

Fast to compute for α = 0.5

Sn+1 = 0.5 ∗ Tn + 0.52
∗ Tn−1 + 0.53Tn−2 + . . . = 0.5 ∗ (Tn + Sn)

Slide 14

METRICS

➜ Execution time: Ts

➜ Waiting time: time a thread waits for execution:

Tw

➜ Turnaround time: time a thread spends in the system (waiting
plus execution time):

Tw + Ts = Tr

➜ Normalised turnaround time:

Tr/Ts

(long waiting times can be tolerated for long run times)

SCHEDULING EXAMPLE 7

Slide 15

SCHEDULING EXAMPLE

Thread Arrival Time CPU Burst Length

A 0 3

B 2 6

C 4 4

D 6 5

E 8 2

What is the optimal order (preemptive and non-preemptive)
with respect to waiting time, turnaround time, normalised
turnaround time?

Slide 16
A
B
C
D
E

0 5 10 15 20

SCHEDULING EXAMPLE 8



Slide 17

First-come-first-served (FCFS) scheduling:

A
B
C
D
E

0 5 10 15 20
➜ Nonpreemptive: each thread, once scheduled, runs to

completion
➜ Scheduler selects the oldest thread in the ready queue

Performance:
➜ Average waiting time: not optimal, since even short threads

may have to wait a very long time
➜ I/O threads have to wait until CPU-bound thread completes,

favors CPU-bound threads (convoy effect)
➜ Not suitable for time sharing systems

Slide 18

Shortest-thread-next scheduling:

A
B
C
D
E

0 5 10 15 20

➜ Non-preemptive policy

➜ Select thread with shortest expected burst length

• Short thread jumps ahead of longer running threads

➜ May need to abort thread exceeding its estimate

➜ Possibility of starvation of longer running threads

SCHEDULING EXAMPLE 9

Slide 19

Shortest-remaining-time scheduling:

A
B
C
D
E

0 5 10 15 20

➜ Preemptive version of shortest-thread-next policy

➜ Must estimate processing time

Slide 20

Highest-response-ratio-next (HRRN) scheduling:

A
B
C
D
E

0 5 10 15 20

➜ Attempt to minimise average normalised turnaround time

➜ Choose next thread with the highest ratio

w+s

s

w: waiting time
s: (expected/past) service time
• use past behaviour as a predictor for the future

SCHEDULING EXAMPLE 10



Slide 21

Performance of HRRN:

➜ Shorted threads are favoured

➜ Aging without service increases ratio, longer threads can get
past shorter jobs

SCHEDULING EXAMPLE 11


