Memory Management

Slide 1 COMP3231 Operating Systems

2005/s2

PROCESS

0 One or more threads of execution
0 Resources required for execution

e Memory (RAM)

- program code (“text”)

- data (initialised, uninitialised, stack)

- buffers etc held by kernel on behalf of process
e others

- CPU time

- files, disk space

Slide 2

Slide 4

MEMORY MANAGEMENT

MEMORY MANAGEMENT

0 Subdividing memory to accommodate mulfiple concurrent
processes
(multiprogramming, multitasking)

0 Goals:

Slide 3

e Maximise memory utilisation

e Maximise processor utilisation

e Ensure minimum response time

e Ensure timely execution of “important” processes

0 Conflicting goals = tfradeoffs

MEMORY MANAGEMENT REQUIREMENTS

Address Binding and Relocation
Protection

Sharing

Logical Organisation

O o0ooodg

Physical Organisation

MEMORY MANAGEMENT REQUIREMENTS

MEMORY MANAGEMENT REQUIREMENTS

1. Address binding/relocation:

0O Actual program location in memory unknown at the time the

program is written

e Programs use various forms of symbolic references to data

Slide 5 and instructions
e These must be bound to actual physical memory addresses
e Can happen:
- at compile/link time,
- atload time,
- at run (execution) time.
Example logical address-space layout:
Process control »
information Emry poim : Process Control Block
to program
Branch
instruction
Increasing
address
slide 6 values
Reference
todata
Current top »
of stack

MEMORY MANAGEMENT REQUIREMENTS

Compile/link-fime binding:
0 Can generate absolute addresses at compile/link time
[0 Must recompile/relink code if starting address changes

Slide7 | oad-time binding:
0 Compiler/linker generates relocatable addresses

0 Loader replaces relocatable address by absolute addresses
once starting address is known

Run-time binding:
0 Compiler/linker/loader produce logical addresses
0 Hardware translates addresses during execution
0 Allows dynamic relocation (moving) of program

Dynamic linking:
O Libraries not linked (copied) into executable file

Slide 8

O Libraries are linked to program at load time

O Library entry points are accessed via jump table initialised by
dynamic linker

0 Supports sharing of library code between programs

MEMORY MANAGEMENT REQUIREMENTS

Dynamic loading:

O Library code is not loaded until actually invoked

0 Entfrypoint table initially points to dynamic loader

0 After loading library, loader resets entrypoint addresses.

Slide 9

2. Protection:
O Processes should not be able to reference memory locations in
another process without permission
Slide 10 0 Impossible to check absolute addresses in programs since the
program could be relocated

O Checks must be done at run-time

e Requires hardware

MEMORY MANAGEMENT REQUIREMENTS

3. Sharing:

e Allow several processes to access the same portion of
memory
O Shared code = better memory utilisation
O Communication via shared data

Slide 11

e Selective sharing requires hardware support

4. Logical Organisation:
O Software engineering:

e Programs are written in modules

slide 12 ¢ Modules can be written and compiled independently

e Different degrees of protection given to modules (read-only,
execute-only)

e Share modules
[0 Needs OS support

MEMORY MANAGEMENT REQUIREMENTS

5. Physical Organisation:
0 Memory available for a program plus its data may be insufficient

e Overlaying allows various modules to be assigned the same

region of memory

Slide 13 0 Programmer does not know how much space will be available

e Memory size of system?
e How many active processes?
0 OS should abstract physical organisation

SIMPLE MM APPROACH: FIXED PARTITIONING

Equal-size partitions:
O Any process < partition size can be loaded into any partition
slide 14 O If all partitions are fuIII, slwop OUT. ?ome process
O A program may not fit in a partition.
e The programmer must design the program with overlays
O Any unused space within a partition is wasted:

e Called infernal fragmentation

SIMPLE MM APPROACH: FIXED PARTITIONING

Slide 15

Slide 16

Unequal-size partitions:
O Assign process to the smallest partition within which it will fit

0 Reduces internal fragmentation

0 May have contention for some partitions while others are

unused

e reduces memory and CPU utilisation

e can allocate bigger partition (increases internal
fragmentation)

Memory allocation for fixed partitioning:: E.g., IBM OS/360

mainframes

Multiple
input queues

CH1

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

@)

800K

700K

400K

200K

100K

Single
input queue

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

(b)

SIMPLE MM APPROACH: FIXED PARTITIONING

Fixed partitioning summary:

0

0
0
slide 17 O
0

Simple
Low CPU overhead
Poor memory utilisation
limits number of processes
no support for
- sharing
- logical organisation
- abstracting physical organisation

[}

SIMPLE MM APPROACH: DYNAMIC PARTITIONING

Partitions are of variable length and number
Process is allocated exactly as much memory as required

O Eventually get unusable holes in the memory.

Slide 18

e Called external fragmentation
Must use compaction to free up memory

e shiff processes so they are contiguous and all free memory is
in one block

SIMPLE MM APPROACH: DYNAMIC PARTITIONING

Slide 19

Slide 20

External fragmentation:

Operating
System

f

8M

56M

Operating
System

Process 1

20M

36M

Operating Operating
System System
Process 1 20M Process 1 20M

Process 2

g» 14M

Process 2 14M

22m

Process 3 18M

e

Now swap out process 2 to make space for process 4:

External fragmentation...:

Operating
System

Process 1

Process 3

e

20M

14am

18M

Operating
System

Process 1

Process 4

Process 3

20M

8M
6M

18M

am

Operating
System

Process 4

Process 3

20M

8M
6M

18M

am

Operating
System

Process 2

Process 3

=
£
|

SIMPLE MM APPROACH: DYNAMIC PARTITIONING

Dynamic Partitioning Placement Algorithms:

OS must pick free block to allocate to a process

DYNAMIC PARTITIONING
e Best-fit algorithm:

0 Chooses the block that is closest in size to the request The Buddly System:
O Maintain block list in size order

O Leaves small fragments, unlikely to be useful
0 Tends to be slow

0 Entire space available is treated as a single block of 2V
O If arequest of size s such that 2V~ < s < 2Y, entire block is

Slide 21 Slide 23 dllocated
o First-fit algorithm: 0 Otherwise:
O Use first block big enough O Block is split info two equal buddies
O Maintain block list in address order 0 Process continues until suitable size block of size 2° is
O May have to search frequently past same allocated blocks generated, so that 27! < s < 2°

o Nexi-fit algorithm: O Useful also for dynamic heap management (malloc())

0 Continue search from where last allocation was made
O fragmentation at end of memory block

aM av
2 First Fit M
Buddy system example:
22M
oM 1Mbyteblock [im |
Best Fit Request 100K [A=128K| 128K | 256 K [512K |
Last 18M
allocated M Request 240K [A=128K| 128K | B=256K | 512K]
block (14M)
Request 64 K [A=128K F-64K[64K | B=256K 512K |
) am M) Request 256 K [A=128K F=6[64K | B=256K | D=256K [256 K]
Slide 22 Slide 24
6M M Release B [A=128K [o=otk[64K | 256 K [D =256K [256 K |
ReleaseA [128K [=otk[64K | 256 K [D=256K | 256 K |
[] Attocated block
Request 75K [E=128K =e4k[64K | 256 K [D =256K [256 K |
14M D Free block 14M
ReleaseC [E=128K [128K | 256 K [D=256K [256 K |
Next Fit Release E | 512K I D=256K | 256K]
Release D | im]
36M
20M
(a) Before (b) After

DYNAMIC PARTITIONING 11 DYNAMIC PARTITIONING

Minimal hardware support for relocation:
Buddy system representation::

Relative address

M

@ 7777777777777777777777 Process Control Block
512K
Program
256K
Slide 25 Slide 27
128K !
| v Data
i Interrupt to
64K 3 operating system
3 Stack
A=128K [c-esK[64 K 256 K D = 256K 256 K S
Processimagein
main memory
Registers used during execution:
Relocation: 0 Base register
0 Program uses logical (or virfual) addresses o starting address for the process
0 Actual (absolute or physical) addresses are determined at load e added to logical address to obtain absolute address
fime O Limit (bounds) register
0 Addresses change at run time due to ; :
slide 26 . slide 28 e ending location of the process
e swapping e compared to absolute address to detect address-range
e compaction violation

O Requires address translation at run time (by hardware) 0 Set atload or relocation time
O This approach to memory management is called virtual O Part of process context
memaory O Implies contiguous allocation of physical memory
0 Cannot support partial sharing of address spaces
DYNAMIC PARTITIONING 13 PAGING

Slide29 U

PAGING

Partition physical memory intfo small equal-size chunks called
frames
divide each process’ (virtual) address space into the same size
chunks called pages
virtual memory address consist of

- page number and

- offset within the page
OS maintains a page table for each process

- contains the frame location for each page in the process
Process’ physical memory does not have o be contiguous

Page assignment:

Slide 30

Frame Main memory Main memory Main memory
number
0 0 A0 0 A0
1 1 Al 1 Al
2 2 A2 2 A2
3 3 A3 3 A3
4 4 4 BO;
5 5 5 B.1
6 6 6 B.2!
7 7 7
8 8 8
9 9 9
10 10 10
n n n
12 12 12
13 13 13
14 14 14
(a) Fifteen Available Frames (b) Load ProcessA () Load ProcessB

PAGING

Main memory Main memory Main memory

0 A0 0 A0 0 A0
1 Al 1 Al 1 Al
2 A2 2 A2 2 A2
3 A3 3 A3 3 A3
4 B.O 4 4 D.0
5 B.1 5 5 D.1
6 B.2 6 6 D.2
7 Y 7 Y 7 Y
8 okt 8 (ot 8 (ot
9 L¥Y, 9 <2 9 Y
10 L3 10 5% 10 %Y
. u 1 n D3
Slide 31 12 12 12 D.4
13 13 13
14 14 14
(d) Load Process C (e) Swap out B (f) Load Process D
= o
1 1] 8
2 29
ProcessB 3[10
pagetable Process C
pagetable pagetable ProcessD
pagetable
Paging:
O No external fragmentation
i Small internal fragmentation
Slide 32) :
0 Allows sharing by mapping several pages to the same frame
O Abstracts physical organisation
0 Moderate support for logical organisation
15 SEGMENTATION 16

Slide 33

Slide 34

SEGMENTATION

O Instead of equal-size pages use arbitrary-sized segments
Address consist of two parts: segment number and offset
O Properties:
e Supports sharing by mapping several segments fo same PM
e Supports logical organisation
e Abstracts physical organisation
0 Since segments are not equal get similar issues as with dynamic
partitioning

O

e no internal fragmentation
o significant external fragmentation

Logical Addresses:

Logical address= Logical address=
Relative address = 1502 Page#f = 1, Offset = 478 Segmenti# = 1, Offset = 752
0000010111011110 0000010111011110 0001001011110000
—_— oy —_—
g £z
g e
2 o
iz : 2
£3 5
58 o g
B <3 2
38 g)
&g
88
~
& &
£)— 28
(a) Partitioning }g é (c) Segmentation
-2
(b) Paging =
(pagesize= 1K)

SEGMENTATION 17

