Deadlock
Slide 1 COMP3231 Operating Systems

2005 s2

DEADLOCK

What is a deadlock?
0 Permanent blocking of a set of processes that either
e compete for system resources or
e communicate with each other (message as resource)
0 Resources:
e preemptable
Slide 2 e nonpreemtable resources
O Deadlocks involve conflicting needs for nonpreemtable
resources by two or more processes
0 Deadlocks can occur on many levels in the system

0 Unfortunately, there is no efficient method o prevent a
deadlock in the general case

Let’s look at some examples and at the conditions for
deadlock

DEADLOCK

Danger of deadlock in continental driving rules:

slide 3 &R E ARAERTE

REUSABLE VERSUS CONSUMABLE RESOURCES

0 Reusable resource: used by one process at a time and not
depleted by that use

O Consumable resource: created (produced) and destroyed
(consumed) by a process

slide4 Reusable Resources:
O Processes obtain resources that they later release for reuse by
other processes
0 Examples are processors, I/O channels, main and secondary
memory, files, databases, and semaphores
0 In case of two processes and two resources, deadlock occurs if
each process holds one resource and requests the other

REUSABLE VERSUS CONSUMABLE RESOURCES

Typical deadlock with reusable resources:

Process P Process Q
Step Action Step Action
Po Request (D) Y% Request (T)
p, [Lock(D) g |Lock(T)
P2 Request (T) 4, Request (D)
P, |Lock(T) 4 |Lock (D)
slide 5 P, Perform function a, Perform function
Ps Unlock (D) (o Unlock (T)
Ps Unlock (T) Og Unlock (D)

The following sequence leads to a deadlock:

p07 p17 q07 Q17 p27 q2
[J Should this really be the problem of the OS designer?

Another example of deadlock with reusable resources:

0 Space is available for allocation of 200K bytes and the following
sequence of events occur

P, P;
. Request 80kB; Request 70kB;
Slide 6 q q
Request 60kB; Request 80kB;

0 Deadlock occurs if both processes progress to their second
request

O In this case, the problem can be solved by using virftual memory
(this is an example of resource preemption)

REUSABLE VERSUS CONSUMABLE RESOURCES

Consumable Resources:
0O Interrupts, signals, messages, and information in /O buffers
0 Deadlock may occur if a Receive message is blocking
0 May take a rare combination of events to cause deadlock
Example of deadlock:

0 Deadlock occurs if receive is blocking
Slide 7

P, P>

Receive(P.); Receive(P,);

Send(P;, M,); Send(P:, M);

CONDITIONS FOR DEADLOCK

How can we accurately characterise the conditions
that lead to a deadlock?

Necessary conditions for deadlock:
O Mutual exclusion: only one process may use a resource at a
time
0 Hold-and-wait: a process holds a resource while awaiting
Slide 8 assignment of others
O No preemption of resources:
e A process that is denied a request must not release the
resources it already has
e When one process requests a resource held by another, the
second one is not preempted by the OS
0 Circular wait: we have a closed chain of processes, such that
each process holds at least one resource needed by the next in
the chain, e.g.,

CONDITIONS FOR DEADLOCK

Resource

Slide 9 Process Process

Resour ce
B

STRATEGIES TO DEAL WITH DEADLOCKS

O The Ostrich Algorithm
O Prevention
0 Avoidance by careful resource allocation

O Detection and Recovery: let then occur, detect them and take

slide 10 action
The Ostrich Algorithm:

Stick your head in the sand and pretend there is no problem

at all!
0 Unix & Windows
0 Avoid deadlock in the kernel!

DEADLOCK PREVENTION

DEADLOCK PREVENTION

What is deadlock prevention?

Make it impossible that one of the four conditions for
deadlock arise
O mutual exclusion
0 hold-and-wait
Slide 11 0 no preemption
O circular wait

Mutual exclusion:
O we can’t generally exclude it
0 we can avoid assigning resources when not absolutely
necessary
0 as few processes as possible should claim the resource

Hold-and-wait:

0 Can we require processes to request all resources at once?
O Most processes do not statically know about the resources they

slide 12 need
ide 0 Used in some mainframe batch systems

0 Wasteful, but works

O Variation: before requesting new resource, temporarily release

other resources

DEADLOCK PREVENTION

No preemption:

Preemption is feasible for some resources (e.g., processor
and memory), but not for others (state must be saved and
restored)

Circular wait:
e order resources by an index: Ry, Ra, ...
Slide 13 .)
e requires that resources are always requested in order

e P, holds R; and requests R;, and P, holds R; and
requests R; is impossible, as it implies

i<j and i>j

e is sometimes a feasible strategy, but not generally efficient

DEADLOCK AVOIDANCE

What is deadlock avoidance?:
0 We don’t exclude any of the four conditions for deadlock per se
0 Instead we decide on a per case basis whether a process is
deemed likely to deadlock

0 Thus, we have to possess some knowledge about future
Slide 14 allocation requests of processes

Generally, we can distinguish two approaches to deadlock
avoidance:
O Process initiation denial: we just don’t start a process if it might
deadlock
0 Resource allocation denial: we deny allocation requests, which
are likely to lead to deadlock in the future

PROCESS INITIATION DENIAL

PROCESS INITIATION DENIAL

Consider a system of n processes and m types of resources:

0 Resource vector: (R1, Rz, ..., Rn)
0O Available vector: (Vi,Va,...,V4)
0 Matrices:
Claim matrix: Allocation matrix:
Slide 15 Cun Ci2 -+ Cim An A - A
Cor Coaa -+ Com Aoy Az - Aom
Cni Ch2 -+ Cpm Anr Anz - Anm

0 C4; requirement for process ¢ for resource j
0 A;; allocation of resource j to process i

Example: We have two processes P, and P, and three
resources Ry, R, and R3. Each of the three resources can be
allocated to only a single process at each point in time
0o p
- holds R,
- requires R1, R
O P
- holds no resource
- requires Rs, R3
0O Resource vector: (1,1,1)
0 Available vector: (0,1,1)

Slide 16

Claim matrix: Allocation matrix:
1 1 0 1 0
01 1 0 0

PROCESS INITIATION DENIAL

The following relationships hold:
O Ri=Vi+ Y ;_, A : dllresources are either available or
allocated
O Ck; < R;: no process can hold more than the total amount of
resources in the system
0 Ag; < Ck;: no process is allocated more than it originally
claimed fo need

Slide 17 peadiock avoidance policy:

0 Start a new process P,1 only if, for all 4,

n

Vi>Cnyri + chi

k=1

O Unfortunately, this strategy is very wasteful!
0 Assumes all processes make their claims together

RESOURCE ALLOCATION DENIAL

0 At any request of aresource, it is tested whether granting this
request bears the potential of deadlock

O The standard algorithm to execute this test is due to Dijkstra and
known as the banker’s algorithm

Banker’s algorithm:
Slide 18 0 Resource and available vector & claim and allocation matrix as

before

0 The algorithm passes out resources to processes if it has enough
on hand to meet potential future demand

O Whenever we can guarantee that future demand can be met,
we are in a safe state

0 A request for resources is granted only if the state after the
resource is granted is safe

RESOURCE ALLOCATION DENIAL

How do we know whether a state is safe?
0O A state is safe if there is at least one sequence of resource
allocations that does not result in deadlock
Slide 19 O Pick a process whose outstanding resource claim can be met
and run it to completion
0 Repeat until either all process have completed, or the system
locks up

Check that this state is safe:

Rl R2 R3 Rl R2 R3 Rl R2 R3
PP 3] 2] 2 PL[1] 0] O [9] 3] 6]
P2 6 1 3 P2 6 1 2
P3 3 1 P P3 2 1 1 Resource Vector
P4 4 2 2 P4 0 0 2 RL R2 R3
Claim Matrix Allocation Matrix [0 2] 1]
. Available Vector
Slide 20
P2 runs to completion:
Rl R2 R3 Rl R2 R3 Rl R2 R3
PL[3] 2] 2 PL[1] 0] 0 [6] 2] 3]
P2 0 0 0 P2 0 0 0 i
P3 3 1 7 P3 2 1 1 Available Vector
P4 4 2 2 P4 0 0 2
Claim Matrix Allocation Matrix

RESOURCE ALLOCATION DENIAL

P1 Runs fo Completion:

Rl R2 R3 Rl R2 R3 Rl R2 R3
PL[O] 0] 0O pL O] 0] 0
PR 0] 0] 0 PR 0O 0] 0]
PR 3| 1| 4 PR 2| 1] 1 Available Vector Disadvantages of the Banker’s algorithm:
P4 4 2| 2 PA 0O 0] 2 . . ;
0 Maximum resource requirement must be stated in advance
Siide 21 Claim Matrix Allocation Matrix Siide 23 O Processes under consideration must be independent; no
ide P3 Runs to Completion: ide synchronization requirements
O There must be a fixed number of resources to allocate
Rl R2 R3 Rl R2 R3 Rl R2 R3)])
PL 0O 0 0 P10 0 0 [9] 3] 4] O No process may exit while holding resources
PR 0] 0] 0 PR 0O 0] 0]
P3 0 0 0 P3 0 0 0 Available Vector
P4 4 2| 2 PA 0O 0] 2
Claim Matrix Allocation Matrix

Example of a request leading to an unsafe state: DEADLOCK DETECTION

o R31 R22 R23 o Rll '_‘;2 %3 O An alternative to deadlock avoidance is deadlock detection
w6 7 3 m 5 T 1 0 However, for this to be useful, we require to be able to either
Resource Vector .)
P3| 3 [1| 4 P3| 2| 1] 1 o roll processes back (in the extreme case, kill them) or
Bl ¢l 2| Z P4 (CE(ON (2 Rl R2 R3 « preempt resources
Claim Matrix Allocation Matrix 1 1 2 " . , . .
(1] 1] 2] Modification of Banker’s algorithm for deadlock detection:
Avallable Vector 0 We need arequest matrix Q (oustanding requests) instead of
slide 22 slide 24 , , 9
the claim matrix
P1 requests R1 & R3: O Disregard processes without any allocation (hot holding
resources)
Rl R2 R3 Rl R2 R3 Rl R2 R3 0 Consid leted if outstandi "
. BERRER 1 RRGRRR (o[1] 1] onsider process completed if outstanding requests are
el 11 3 s 1 1 satisfied
Available Vect) .
P3| 3 1 4 P3| 2 1 1 valanie Viector 0 Checks can be made each time a resource is allocated
P4 | 4 2 2 P4 | 0O 0 2 - early deadlock detection
Claim Matrix Allocation Matrix - expensive

RESOURCE ALLOCATION DENIAL 11 DEADLOCK DETECTION

Algorithm:

Initially, all processes are unmarked
O mark each process with zero-row in Request martrix
Slide 25 0 set temporary vector W to Available vector Slide 27

O find i such that process i is unmarked, Qix < Wy for1 <k <mn
- No such process = terminate

O mark process ¢, add row of allocation matrix fo W, go to step 3

Rl R2 R3 R4 RS Rl R2 R3 R4 RS RL R2 R3 R4 RS
pilof|1|ofo]f1 pil1]|of1|1]o0 |z|1|1|2|1|
p2lofof1|o]f1 21| 1]ofo]o
p3lofoflofol1 p3lofofo|1]o Resource Vector

Slide26 oy 1| o 1|01 palof|ofofo]fo

Request Matrix Q

Allocation Matrix A

Rl R2 R3 R4 R5

[ofof o]

Available Vector

DEADLOCK DETECTION

Recovery:

O Abort all deadlocked processes (most common solutfion)
0 Rollback each deadlocked process to some previously defined
checkpoint and restart them (original deadlock may reoccur)
O Successively abort deadlocked processes until deadlock no
longer exists (invoke deadlock detection algorithm each time)
0 Successively preempt some resources from process until
deadlock no longer exists
- a process that has a resource preempted must be rolled
back prior to its acquisition

13 DEADLOCK DETECTION

