
Slide 1

Concurrency Control

COMP3231 Operating Systems

2005/S2

Slide 2

WHAT IS CONCURRENCY CONTROL?

Concurrency appears in many contexts:

➜ Multi-threading: concurrent threads share an address space

➜ Multi-programming: concurrent processes execute on a
uniprocessor

➜ Multi-processing: concurrent processes on a multiprocessor

➜ Distributed processing: concurrent processes executing on
multiple nodes connected by a network

Concurrency is also used in different forms:

➜ Multiple applications (multiprogramming)

➜ Structured application (application is a set of concurrent
threads or processes)

➜ Operating-system structure (OS is a set of threads or processes)

WHAT IS CONCURRENCY CONTROL? 1

Slide 3

Concurrent processes (threads) need special support:

➜ Communication among processes

➜ Allocation of processor time

➜ Sharing of resources

➜ Synchronisation of multiple processes

Concurrency can be dangerous to the unwary programmer:

➜ Sharing global resources (order of read and write operations)

➜ Management of allocation of resources (danger of deadlock)

➜ Programming errors difficult to locate (Heisenbugs)

Slide 4

CONCURRENT ACCESS TO A GLOBAL QUEUE

last head

Inserting:

➀ create new object

➁ set last->next to &new

➂ set last to &new

CONCURRENT ACCESS TO A GLOBAL QUEUE 2



Slide 5

CONCURRENT ACCESS TO A GLOBAL QUEUE

last head

Thread A:
➜ create new object
➜ set last->next to &new

➜ set last to &new

Thread B:

➜ create new object
➜ set last->next to &new

➜ set last to new

Slide 6

We can get the same problem with truly parallel threads:

Thread A Thread B
...

...

create new object
...

... create new object

... last->next = &new

last->next = &new
...

last = &new
...

Lessons learned:
➜ We have to control access to shared resource (such as shared

variables)
➜ We can do this effectively by controlling access to the code

utilising those shared resources ⇒ critical sections

CONCURRENT ACCESS TO A GLOBAL QUEUE 3

Slide 7

CONCURRENT ACCESS TO A GLOBAL QUEUE

Only one thread at a time should have write access to the
queue:

➜ Thread A creates new object, sets last->next pointer

➜ Thread A is suspended

➜ Thread B is scheduled, calls insert, but since Thread A is
currently in insert, has to wait

➜ Thread A is resumed, the data structure is in the same state as it
was when it was suspended.

➜ Thread A completes operation

➜ Thread B is allowed to execute insert

Slide 8

CONCURRENCY CONTROL

➜ Processes can

• compete for resources

- Processes may not be aware of each other
- execution must not be affected by each other
- OS is responsible for controlling access

• cooperate by sharing a common resource

- Programmer responsible for controlling access
- Hardware, OS, programming language may provide

support

➜ Threads of a process usually do not compete, but cooperate.

➜ Since process access to shared resources is through OS,
problems are the same (although solved on different levels)

• e.g., kernel threads of different competing processes
cooperate

CONCURRENCY CONTROL 4



Slide 9

We face three control problems:

➀ Mutual exclusion: critical resources ⇒ critical sections

• Only one process at a time is allowed in a critical section
• Example: only one process at a time is allowed to send

commands to the printer

➁ Deadlock: e.g., two processes and two resources

➂ Starvation: e.g., three processes compete for a resource

Let’s look at these problems in turn

Slide 10

Mutual exclusion illustrated:

void proc (int i)

{

for (;;) {

entercritical (i); /* blocks if other thread

already in critical section */

<critical section>

exitcritical (i); /* allow other threads to

enter */

<remainder>

}

}

void main () {

parbegin (proc (R_1), proc (R_2), ..., proc (R_n));

}

But how can we implement
entercritical() and exitcritical()?

REQUIREMENTS FOR MUTUAL EXCLUSION 5

Slide 11

REQUIREMENTS FOR MUTUAL EXCLUSION

Implementation:
➜ Only one thread at a time is allowed in the critical section for a

resource
➜ No deadlock or starvation
➜ A thread must not be delayed access to a critical section when

there is no other thread using it
➜ A thread that halts in its non-critical section must do so without

interfering with other thread
➜ No assumptions are made about relative thread speeds or

number of processes

Usage:
➜ A thread remains inside its critical section for a finite time only
➜ No potentially blocking operations should be executed inside a

critical section
➜ No deadlock or starvation

Slide 12

Conceptually, there are three ways to satisfy the
implementation requirements:

➀ Software approach: put responsibility on the processes
themselves

➁ Systems approach: provide support within operation system or
programming language

➂ Hardware approach: special-purpose machine instructions

SOFTWARE APPROACHES TO MUTUAL EXCLUSION 6



Slide 13

SOFTWARE APPROACHES TO MUTUAL EXCLUSION

Premises:

➜ One or more processes with shared memory

➜ Elementary mutual exclusion at level of memory accesses:
- simultaneous accesses to the same memory location are

serialised

In the following, Dijkstra’s presentation of Dekker’s algorithm
(actually, we use Peterson’s algorithm, which is a more

elegant variant of Dekker’s)

Slide 14

A FIRST ATTEMPT

➜ The Plan:
- threads take turns in executing critical section
- exploit serialisation of memory access to implement

serialisation of access to critical section
➼ mutual exclusion

➜ We employ a variable (memory location) turn that indicates
whose turn it is to enter the critical section:

P0:

...

while (turn != 0)

/* do nothing */;

<critical section>

turn = 1;

...

P1:

...

while (turn != 1)

/* do nothing */;

<critical section>

turn = 0;

...

A F IRST ATTEMPT 7

Slide 15

Busy waiting (spin lock):

➜ Process is always checking to see if it can enter the critical
section

✔ implements mutual exclusion

✔ simple

✘ Process burns resources while waiting

Other drawbacks of this code:
✘ Processes must alternate access to the critical section

✘ if one process fails anywhere in the program, the other is
permanently blocked

Slide 16

THE SECOND ATTEMPT

➜ The Problem: turn stores who can enter the critical section,
rather then whether anybody may enter the critical section

➜ The New Plan: we store for each process whether it is in the
critical section right now (in a Boolean flag):

flag[i]: Process i is in the critical section

P0:

...

while (flag[1])

/* do nothing */;

flag[0] = true;

<critical section>

flag[0] = false;

...

P1:

...

while (flag[0])

/* do nothing */;

flag[1] = true;

<critical section>

flag[1] = false;

...

THE SECOND ATTEMPT 8



Slide 17

Is this a good solution?

➜ If one thread fails
✔ outside of the critical section, the other is not blocked
✘ inside a critial section, other thread is blocked (however,

hard to avoid)

➜ But: it does not even guarantee exclusive access!!!
➀ both flags are set to false
➁ T0 enters critical section
➂ T1 enters critical section
➃ T1 sets flag[0]
➄ T0 sets flag[1]

➜ worse if more than two threads involved

Slide 18

THIRD ATTEMPT

➜ The Goal: we have to get rid of the gap between toggling the
two flags

➜ Yet Another Plan: move setting the flag before checking
whether we can enter

P0:

...

flag[0] = true;

while (flag[1])

/* do nothing */;

<critical section>

flag[0] = false;

...

P1:

...

flag[1] = true;

while (flag[0])

/* do nothing */;

<critical section>

flag[1] = false;

...

Is this working?
➜ Nice try, but we lose again! — The gap can cause a deadlock

now

FOURTH ATTEMPT 9

Slide 19

FOURTH ATTEMPT

➜ Previous problem: process sets its own state before knowing the
other process’ state and cannot back off

➜ Our plan: Process retracts its decision if it cannot enter
P0:

...

flag[0] = true;

while (flag[1]) {

flag[0] = false;

delay ();

flag[0] = true;

}

<critical section>

flag[0] = false;

P0:

...

flag[1] = true;

while (flag[0]) {

flag[1] = false;

delay ();

flag[1] = true;

}

<critical section>

flag[1] = false;

Did we finally make it?
➜ Close, but we may have a livelock

Slide 20

Tweaking the code:
➜ We can solve this problem by combining the fourth with the first

attempt

➜ In addition to the flag’s, we use a variable indicating whose
turn it is to have precedence in entering the critical section

FOURTH ATTEMPT 10



Slide 21

Instead of Dekker’s original algorithm, let’s consider
Peterson’s:

P0:

...

flag[0] = true;

turn = 1;

while (flag[1]

&& turn == 1)

/* do nothing */;

<critical section>

flag[0] = false;

...

P1:

...

flag[1] = true;

turn = 0;

while (flag[0]

&& turn == 0)

/* do nothing */;

<critical section>

flag[1] = false;

...

➜ Both processes are courteous and solve a tie in favour of the
other

➜ Algorithm can easily be generalised to work with n processes

FOURTH ATTEMPT 11


