SYSTEM CALLS IN UNIX

O Process Management
- fork()
-waitpid (pid, &statloc, options)
- execve (nane, argv, environp)

A CLOSER LOOK AT SYSTEM CALLS - exit (status)
- kill (pid, signal)

Slide 1 0 User’s view on system calls Slide 3 O File Management

O Implementation of System Calls - open (file, modes)

- close (fd)

-read (fd, buffer, nbytes)
-wite (fd, buffer, nbytes)
- I seek (fd, offset, whence)
- stat (nane, &buf)

Application
Procedure Calls
O File System Management
i System Libraries User Mode . - nkdir (nane, node)
Slide 2 Slide 4

- rndir (nane)
_________ _________________ - link andunl i nk
|4 - mount and unnount
OS Kernel
Kernel Mode
Hardware

SYSTEM CALLS IN UNIX 1 WIN32 APPLICATION PROGRAMMER INTERFACE



WIN32 APPLICATION PROGRAMMER INTERFACE

0 Consists of hundreds of functions
Slide 5 O Many do not invoke system calls, carried out in user space

0 Window management is part of the Win32 API, partially carried
out in the kernel

UNIX Win32 Description

fork CreateProcess Create a new process
waitpid | WaitForSingleObject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer

Slide 6 stat GetFileAttributesEx Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory Change the current working directory
chmod (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

WIN32 APPLICATION PROGRAMMER INTERFACE

What is the difference between a system call and a regular
function call?

Stack

f1 stack
D) frame

<refurn address>
<registers>
<local variables>

f2 stack
frame

<return address>
<registers>
<local variables >

3 stack
frame

<refurn address>
<registers>
<local variables>

Slide 7

PROCEDURE CALLS

O For a procedure call, it is important that the caller and the
callee agree on a certain protocol
In theory, every compiler could use a different protocol

Slide 8

0 Generally, compilers stick to the calling convention of the
architecture

MIPS CALLING CONVENTION



MIPS CALLING CONVENTION

Stack Layout:

Slide 9 0 frame pointer is stored in register $30 ($fp)
0 astack frame consists of the memory on the stack between the
frame pointer and the stack pointer.

oo + <--- sp
| dynam c area |
oo +
| local variables |
Fom e e e eaaaa +
| saved registers |
Fom e e e maaaa +

Slide 10 | frame pointer | <--- fp
oo +
| : |
oo +
| argument 6 | all arguments which are not passed
LR R + in registers
| argunent 5 |
Fom e e me e maaaa +

MIPS CALLING CONVENTION 5

Procedure Call — Caller:
0 Copy first 4 arguments to registers $a0-$a3
O Push remaining arguments on the stack.
Slide 11 0 Save the caller-saved registers ($10-$19) if necessary

O Execute jump and link (j al ) instruction

e causes current pc o be saved (in $ra)

Procedure Call — Callee:
O Allocate space for stack frame (decrement frame size from
stack pointer)

O Save the callee-saved registers in the frame:
Slide 12 o frame pointer ($fp)
return address (Sra)
e arguments ($a0-$a3) if necessary
o registers $s0- Ss7 if used by the callee

0 Update frame pointer(add stack frame size to Ssp)

RETURN FROM CALL



RETURN FROM CALL

copy return value into register $v0

slide 13 restore callee-saved registers that were saved upon entry.
pop the stack frame (add frame size to $sp)
return by jumping to the address in register Sra.

restore caller saved register values

[ [ B |

SYSTEM CALLS

Systems calls are different from procedure calls in two
slide 14 important aspects:
0 Have to be executed in kernel mode

0O For security reasons, they should not use the user stack, but
separate kernel stack

SYSTEM CALLS

Library procedure read Kernel read
read(...){ __--"7) | sysread(...)
; -7 H
0 -=" I
syscal | - g
> ? 1k
T~<_ [
} S~ ')
Slide 15 ==
User Mode Kernel Mode

syscal | fo only way to switch to kernel mode
causes an exception

exception handler activated, not sys_r ead
stack etc has to be set up “by hand”

O Ooogo o

EXCEPTION HANDLER

What does an exception handler do?
saves current stack pointer
switches to kernel stack
save remainder of state (registers, etc)
push frap frame on stack, so stack looks (almo.
Slide 16 control stack
0 find out what caused the exception?

I R |

- syscall
O Which system call

- check syscall number (set by syscall wrapp
O call kernel function to handle system calll
O return to wrapper

st) like a regular

er)

EXCEPTION HANDLER




