
1

1

Scheduling

2

What is Scheduling?
– On a multi-programmed system

• We may have more than one Ready process
– On a batch system

• We may have many jobs waiting to be run
– On a multi-user system

• We may have many users concurrently using the
system

• The scheduler decides who to run next.
– The process of choosing is called scheduling.

3

Is scheduling important?
• It is not in certain scenarios

– If you have no choice
• Early systems

– Usually batching
– Scheduling algorithm simple

» Run next on tape or next on punch tape

– Only one thing to run
• Simple PCs

– Only ran a word processor, etc….
• Simple Embedded Systems

– TV remote control, washing machine, etc….

4

Is scheduling important?
• It is in most realistic scenarios

– Multitasking/Multi-user System
• Example

– Email daemon takes 2 seconds to process an email
– User clicks button on application.

• Scenario 1
– Run daemon, then application

» System appears really sluggish to the user
• Scenario 2

– Run application, then daemon
» Application appears really responsive, small email delay is

unnoticed

• Scheduling decisions can have a dramatic effect on the
perceived performance of the system
– Can also affect correctness of a system with deadlines

5

Application Behaviour

• Bursts of CPU usage alternate with periods of I/O
wait

6

Application Behaviour

a) CPU-Bound process
• Spends most of its computing
• Time to completion largely determined by received CPU time

2

7

Application Behaviour

b) I/O-Bound process
– Spend most of its time waiting for I/O to complete

• Small bursts of CPU to process I/O and request next I/O
– Time to completion largely determined by I/O request time

8

Observations

• Generally, technology is increasing CPU speed much
faster than I/O speed

⇒ CPU bursts becoming shorter, I/O waiting is relatively constant
⇒ Processes are becoming more I/O bound

9

Observations

• We need a mix of CPU-bound and I/O-bound processes
to keep both CPU and I/O systems busy

• Process can go from CPU- to I/O-bound (or vice versa)
in different phases of execution

10

Observations

• Choosing to run an I/O-bound process delays a CPU-bound
process by very little

• Choosing to run a CPU-bound process prior to an I/O-bound
process delays the next I/O request significantly

– No overlap of I/O waiting with computation
– Results in device (disk) not as busy as possible

⇒ Generally, favour I/O-bound processes over CPU-bound processes

11

When is scheduling performed?
– A new process

• Run the parent or the child?
– A process exits

• Who runs next?
– A process waits for I/O

• Who runs next?
– A process blocks on a lock

• Who runs next? The lock holder?
– An I/O interrupt occurs

• Who do we resume, the interrupted process or the process that was
waiting?

– On a timer interrupt? (See next slide)
• Generally, a scheduling decision is required when a

process (or thread) can no longer continue, or when an
activity results in more than one ready process.

12

Preemptive versus Non-preemptive
Scheduling

• Non-preemptive
– Once a thread is in the running state, it continues until it

completes, blocks on I/O, or voluntarily yields the CPU
– A single process can monopolised the entire system

• Preemptive Scheduling
– Current thread can be interrupted by OS and moved to ready

state.
– Usually after a timer interrupt and process has exceeded its

maximum run time
• Can also be as a result of higher priority process that has become

ready (after I/O interrupt).
– Ensures fairer service as single thread can’t monopolise the

system
• Requires a timer interrupt

3

13

Categories of Scheduling Algorithms
• The choice of scheduling algorithm depends on the

goals of the application (or the operating system)
– No one algorithm suits all environments

• We can roughly categorise scheduling algorithms as
follows
– Batch Systems

• No users directly waiting, can optimise for overall machine
performance

– Interactive Systems
• Users directly waiting for their results, can optimise for users

perceived performance
– Realtime Systems

• Jobs have deadlines, must schedule such that all jobs (mostly) meet
their deadlines.

14

Goals of Scheduling Algorithms

• All Algorithms
– Fairness

• Give each process a fair share of the CPU
– Policy Enforcement

• What ever policy chosen, the scheduler should
ensure it is carried out

– Balance/Efficiency
• Try to keep all parts of the system busy

15

Goals of Scheduling Algorithms
• Batch Algorithms

– Maximise throughput
• Throughput is measured in jobs per hour (or similar)

– Minimise turn-around time
• Turn-around time (Tr)

– difference between time of completion and time of submission
– Or waiting time (Tw) + execution time (Te)

– Maximise CPU utilisation
• Keep the CPU busy
• Not as good a metric as overall throughput

16

Goals of Scheduling Algorithms
• Interactive Algorithms

– Minimise response time
• Response time is the time difference between issuing a

command and getting the result
– E.g selecting a menu, and getting the result of that selection

• Response time is important to the user’s perception of the
performance of the system.

– Provide Proportionality
• Proportionality is the user expectation that short jobs will

have a short response time, and long jobs can have a long
response time.

• Generally, favour short jobs

17

Goals of Scheduling Algorithms
• Real-time Algorithms

– Must meet deadlines
• Each job/task has a deadline.
• A missed deadline can result in data loss or

catastrophic failure
– Aircraft control system missed deadline to apply brakes

– Provide Predictability
• For some apps, an occasional missed deadline is

okay
– E.g. DVD decoder

• Predictable behaviour allows smooth DVD
decoding with only rare skips

18

Scheduling Algorithms

Batch Systems

4

19

First-Come First-Served (FCFS)

• Algorithm
– Each job is placed in single queue, the first

job in the queue is selected, and allowed to
run as long as it wants.

– If the job blocks, the next job in the queue is
selected to run

– When a blocked jobs becomes ready, it is
placed at the end of the queue

20

Example
• 5 Jobs

– Job 1 arrives slightly
before job 2, etc…

– All are immediately
runnable

– Execution times
indicated by scale on
x-axis

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

21

FCFS Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

22

FCFS
• Pros

– Simple and easy to implement
• Cons

– I/O-bound jobs wait for CPU-bound jobs
⇒Favours CPU-bound processes

• Example:
– Assume 1 CPU-bound process that computes for 1 second and

blocks on a disk request. It arrives first.
– Assume an I/O bound process that simply issues a 1000

blocking disk requests (very little CPU time)
– FCFS, the I/O bound process can only issue a disk request per

second
» the I/O bound process take 1000 seconds to finish

– Another scheme, that preempts the CPU-bound process when
I/O-bound process are ready, could allow I/O-bound process to
finish in 1000* average disk access time.

23

Shortest Job First

• If we know (or can estimate) the execution
time a priori, we choose the shortest job
first.

• Another non-preemptive policy

24

Our Previous Example
• 5 Jobs

– Job 1 arrives slightly
before job 2, etc…

– All are immediately
runnable

– Execution times
indicated by scale on
x-axis

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

5

25

Shortest Job First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

26

Shortest Job First
• Con

– May starve long jobs
– Needs to predict job length

• Pro
– Minimises average turnaround time (if, and only if, all

jobs are available at the beginning)
– Example: Assume for processes with execution times

of a, b, c, d.
• a finishes at time a, b finishes at a + b, c at a + b + c, and so

on
• Average turn-around time is (4a + 3b + 2c + d)/4
• Since a contributes most to average turn-around time, it

should be the shortest job.

27

Shortest Remaining Time First

• A preemptive version of shortest job first
• When ever a new jobs arrive, choose the

one with the shortest remaining time first
– New short jobs get good service

28

Example
• 5 Jobs

– Release and execution
times as shown

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

29

Shortest Remaining Time First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

30

Shortest Remaining Time First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

6

31

Shortest Remaining Time First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

32

Shortest Remaining Time First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

33

Shortest Remaining Time First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

34

Shortest Remaining Time First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

35

Shortest Remaining Time First

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

36

Scheduling in Batch Systems

Three level scheduling

7

37

Three Level Scheduling

• Admission Scheduler
– Also called long-term scheduler
– Determines when jobs are admitted into the

system for processing
– Controls degree of multiprogramming
– More processes ⇒ less CPU available per

process

38

Three Level Scheduling

• CPU scheduler
– Also called short-term scheduler
– Invoked when ever a process blocks or is

released, clock interrupts (if preemptive
scheduling), I/O interrupts.

– Usually, this scheduler is what we are
referring to if we talk about a scheduler.

39

Three Level Scheduling

• Memory Scheduler
– Also called medium-term scheduler
– Adjusts the degree of multiprogramming via

suspending processes and swapping them
out

