
1

I/O Management

Chapter 5

2

Operating System Design
Issues

• Efficiency
– Most I/O devices slow compared to main memory

(and the CPU)
• Use of multiprogramming allows for some processes to be

waiting on I/O while another process executes
• Often I/O still cannot keep up with processor speed
• Swapping may used to bring in additional Ready processes

– More I/O operations

• Optimise I/O efficiency – especially Disk &
Network I/O

3

Operating System Design
Issues

• The quest for generality/uniformity:
– Ideally, handle all I/O devices in the same way

• Both in the OS and in user applications
– Problem:

• Diversity of I/O devices
• Especially, different access methods (random access versus

stream based) as well as vastly different data rates.
• Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level
routines so that processes and upper levels see
devices in general terms such as read, write, open,
close.

4

I/O Software Layers

Layers of the I/O Software System

5

Interrupt Handlers
• Interrupt handlers are best “hidden”

• Can execute at almost any time
– Raise (complex) concurrency issues in the kernel
– Have similar problems within applications if interrupts are

propagated to user-level code (via signals, upcalls).

– Generally, systems are structured such that drivers
starting an I/O operations block until interrupts notify
them of completion

– Example dev_read() waits on semaphore that the interrupt
handler signals.

• Interrupt procedure does its task
– then unblocks driver waiting on completion

6

Interrupt Handler Steps
• Steps must be performed in software upon occurrence of

an interrupt
– Save regs not already saved by hardware interrupt mechanism
– (Optionally) set up context (address space) for interrupt service

procedure
• Typically, handler runs in the context of the currently running process

– No expensive context switch

– Set up stack for interrupt service procedure
• Handler usually runs on the kernel stack of current process

– Implies handler cannot block as the unlucky current process will
also be blocked ⇒ might cause deadlock

– Ack/Mask interrupt controller, reenable other interrupts

7

Interrupt Handler Steps
– Run interrupt service procedure

• Acknowledges interrupt at device level
• Figures out what caused the interrupt

– Received a network packet, disk read finished, UART transmit
queue empty

• If needed, it signals blocked device driver
– In some cases, will have woken up a higher priority

blocked thread
• Choose newly woken thread to schedule next.
• Set up MMU context for process to run next

– Load new/original process' registers
– Re-enable interrupt; Start running the new process

8

Device Drivers
• Logical position of device drivers

is shown here
• Drivers (originally) compiled into

the kernel
– Including OS/161
– Device installers were

technicians
– Number and types of devices

rarely changed
• Nowadays they are dynamically

loaded when needed
– Linux modules
– Typical users (device installers)

can’t build kernels
– Number and types vary greatly

• Even while OS is running (e.g
hot-plug USB devices)

9

Device Drivers
• Drivers classified into similar categories

– Block devices and character (stream of data) device
• OS defines a standard (internal) interface to the

different classes of devices
• Device drivers job

– translate request through the device-independent
standard interface (open, close, read, write) into
appropriate sequence of commands (register
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down
cleanly at shutdown

10

Device Driver
• After issuing the command to the device, the

device either
– Completes immediately and the driver simply returns

to the caller
– Or, device must process the request and the driver

usually blocks waiting for an I/O complete interrupt.
• Drivers are reentrant as they can be called by

another process while a process is already
blocked in the driver.
– Reentrant: Code that can be executed by more than

one thread (or CPU) at the same time
• Manages concurrency using synch primitives

11

Device-Independent I/O
Software

• There is commonality between drivers of
similar classes

• Divide I/O software into device-dependent
and device-independent I/O software

• Device independent software includes
– Buffer or Buffer-cache management
– Managing access to dedicated devices
– Error reporting

12

Device-Independent I/O Software

(a) Without a standard driver interface
(b) With a standard driver interface

13

Driver ⇔ Kernel Interface
• Major Issue is uniform interfaces to devices and

kernel
– Uniform device interface for kernel code

• Allows different devices to be used the same way
– No need to rewrite filesystem to switch between SCSI, IDE or

RAM disk
• Allows internal changes to device driver with fear of breaking

kernel code
– Uniform kernel interface for device code

• Drivers use a defined interface to kernel services (e.g.
kmalloc, install IRQ handler, etc.)

• Allows kernel to evolve without breaking existing drivers
– Together both uniform interfaces avoid a lot of

programming implementing new interfaces

14

Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Single buffering in the kernel followed by copying to user

space
(d) Double buffering in the kernel

15

No Buffering

• Process must read/write a device a
byte/word at a time
– Each individual system call adds significant

overhead
– Process must what until each I/O is complete

• Blocking/interrupt/waking adds to overhead.
• Many short runs of a process is inefficient (poor

CPU cache temporal locality)

16

User-level Buffering
• Process specifies a memory buffer that incoming

data is placed in until it fills
– Filling can be done by interrupt service routine
– Only a single system call, and block/wakeup per data

buffer
• Much more efficient

17

User-level Buffering
• Issues

– What happens if buffer is paged out to disk
• Could lose data while buffer is paged in
• Could lock buffer in memory (needed for DMA), however

many processes doing I/O reduce RAM available for paging.
Can cause deadlock as RAM is limited resource

– Consider write case
• When is buffer available for re-use?

– Either process must block until potential slow device drains
buffer

– or deal with asynchronous signals indicating buffer drained

18

Single Buffer

• Operating system assigns a buffer in main
memory for an I/O request

• Stream-oriented
– Used a line at time
– User input from a terminal is one line at a time

with carriage return signaling the end of the
line

– Output to the terminal is one line at a time

19

Single Buffer

• Block-oriented
– Input transfers made to buffer
– Block moved to user space when needed
– Another block is moved into the buffer

• Read ahead

20

Single Buffer
– User process can process one block of data

while next block is read in
– Swapping can occur since input is taking

place in system memory, not user memory
– Operating system keeps track of assignment

of system buffers to user processes

21

Single Buffer Speed Up
• Assume

– T is transfer time from device
– C is computation time to process incoming packet
– M is time to copy kernel buffer to user buffer

• Computation and transfer can be done in parallel
• Speed up with buffering

MCT
CT
+

+
),max(

22

Single Buffer

• What happens if kernel buffer is full, the
user buffer is swapped out, and more data
is received???
– We start to lose characters or drop network

packets

23

Double Buffer

• Use two system buffers instead of one
• A process can transfer data to or from one

buffer while the operating system empties
or fills the other buffer

24

Double Buffer Speed Up
• Computation and Memory copy can be done in

parallel with transfer
• Speed up with double buffering

• Usually M is much less than T giving a
favourable result

),max(MCT
CT
+

+

25

Double Buffer

• May be insufficient for really bursty traffic
– Lots of application writes between long

periods of computation
– Long periods of application computation while

receiving data
– Might want to read-ahead more than a single

block for disk

26

Circular Buffer
• More than two buffers are used
• Each individual buffer is one unit in a circular

buffer
• Used when I/O operation must keep up with

process

27

Important Note

• Notice that buffering, double buffering, and
circular buffering are all

Bounded-Buffer
Producer-Consumer

Problems

28

Is Buffering Always Good?

• Can M be similar or greater than C or T?

),max(MCT
CT
+

+
MCT

CT
+

+
),max(

Single Double

29

Buffering in Fast Networks

• Networking may involve many copies
• Copying reduces performance

– Especially if copy costs are similar to or greater than computation or
transfer costs

• Super-fast networks put significant effort into achieving zero-copy
• Buffering also increases latency

30

I/O Software Summary

Layers of the I/O system and the main
functions of each layer

