File Management

COMP3231
Operating Systems

THE UISIVERSITY O 1
MEW SOUTH WALES

Files

* Named repository for data

— Potentially large amount of data

» Beyond that available via virtual memory
— (Except maybe 64-bit systems)

— File lifetime is independent of process lifetime
— Used to share data between processes
« Convenience
— Input to applications is by means of a file
— Output is saved in a file for long-term storage

THE UISIVERSITY O 3
MEW SOUTH WALES

Obijectives for a
File Management System

» Provide a convenient naming
system for files

* Provide uniform 1/O support for
a variety of storage device

* Optimise performance
* Minimize or eliminate the
potential for lost or destroyed

types data

— Same file abstraction * Provide I/0O support and
Provide a standardized set of access control for multiple

1/0 interface routines users

— Storage device drivers » Support system administration

interchangeable
» Guarantee that the data in the
file are valid

THE URNIVERSITY (3 5
MEW SOUTH WALES

(e.g., backups)

References

* Textbook
— Tanenbaum, Chapter 6

THE UISIVERSITY O 2
MEW SOUTH WALES

File Management

» File management system is considered
part of the operating system
— Manages a trusted, shared resource
— Bridges the gap between:
« low-level disk organisation (an array of blocks),

« and the user’s views (a stream or collection of
records)

« Also includes tools outside the kernel

— E.g. formatting, recovery, defrag, consistency,
and backup utilities.

THE UISIVERSITY O 4
MEW SOUTH WALES

File Names

* File system must provide a convenient naming
scheme
— Textual Names
— May have restrictions
« Only certain characters
— E.g. no ‘/ characters
« Limited length
« Only certain format
- EgDOS,8+3
— Case (in)sensitive
— Names may obey conventions (.c files or C files)
« Interpreted by tools (UNIX)
« Interpreted by operating system (Windows)

THE URNIVERSITY (3 6
MEW SOUTH WALES




File Naming

: Extenslon _ Meaning

| file.bak | Backup file

| file.c | C source program

| file.git | Compuserve Graphical Interchange Format image

| filehlpy | Help file

| file.htmi | Weorld Wide Web HyperText Markup Language dacument |
| filejpg | Still picture encoded with the JPEG standard

|file.mpd | Music encoded in MPEG layer 3 audio format
|filempg | Maovie encoded with the MPEG standard

| file.o | Object file (compiler cutput. not yet linked)
| file palt | Portable Docurnent Format file

| tile.ps | PostScript file

| file.teox | Input for the TEX formatting program

| il et | General text file

| file_zip | Compressad archive

Typical file extensions.

THE UISIVERSITY O 7
NEW SOUTH WALES

E

File Structure
From OS’s perspective

1Byte 1 Record

Cat [ Gow [ 0og || [Geat] ton [ 0wt | [[Fory ][ Fan [eem]]

[ Hoo [ s Jrame]

s [ i

» Three kinds of files
— byte sequence
— record sequence
— tree

THE UISIVERSITY O 8
NEW SOUTH WALES

File Structure

* Records

— Collection of bytes
treated as a unit
» Example: employee

» Stream of Bytes

— OS considers a file to
be unstructured

— Simplifies file
record
management for the .
0s — Operations at the level
Applicati of records (read_rec,
— Applications can write_rec)

impose their own
structure

— Used by UNIX,
Windows, most
modern OSes

THE UISIVERSITY O 9
NEW SOUTH WALES

— File is a collection of
similar records

— OS can optimise
operations on records

File Structure

Tree of Records

— Records of variable length

— Each has an associated key

— Record retrieval based on key

— Used on some data processing systems (mainframes)

File Types

* Regular files
+ Directories
» Device Files
— May be divided into

+ Character Devices — stream of bytes
« Block Devices

+ Some systems distinguish between regular file types
— ASCII text files, binary files

+ At minimum, all systems recognise their own executable
file format
— May use a magic number

THE UISIVERSITY O 1"
NEW SOUTH WALES

E

THE UISIVERSITY O 10
NEW SOUTH WALES
[
T [Coapcmamtm — ruere
=
T -
9 X
Sy ke wow e Corr
Trary pare ot
(G sen
' P _—
Tt
Obpect
echin
[ .
[—
njet
meckia

(a) An executable file (b) An archivé (libxyz.a)

THE UISIVERSITY O 12
NEW SOUTH WALES




File Access

» Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up
— convenient when medium was mag tape
* Random access
— bytes/records read in any order
— essential for data base systems
— read can be ...

« move file pointer (seek), then read or ...
« each read specifies the file pointer

THE UISIVERSITY O 13
NEW SOUTH WALES

Typical File Operations

1. Create
2. Delete
3.0pen
4.Close
5.Read
6. Write

7. Append
8. Seek

9. Get
attributes

10.Set
Attributes

11.Rename

THE UISIVERSITY O 15
NEW SOUTH WALES

F_ile Attributes

Attribute | Meaning

| Protection | Wha can access the fila and in what way

| Password | Password needed to access the fia

| Groator | 1D of the persan who created the fil

| oowmer | Currant owner

| Read-only fiag |0 for readiwrite: 1 for read only

| Hicden flag | 0'far narmal 1 for da not display in listings

| Systom flag |0 far narmal filos: 1 for system fie |
| Aschive flag | O far has been backed up: 1 for needs to be backed up |
| ASCllbinary flag | 0 far ASCII fike; 1 for binary file

| Random access flag | O for sequential access only; 1 for random access

| Temgorary nag | 0 tar narmal: 1 for delete file on process exit

| Lock flags | 0 for unlocked; nanzero for locked

| Recard length | Number of bytes in a record

| Key position |_Otsst af the key within each record

| Kay langtn | Number of bytes in the key lieid

| Creation time | Date and time the file was created

| Time of last access | Date and time the file was last acoessed
| Time of last change | Date and time the file has last changed

| Current size | Mumber of bytes in the file
Maximum size | Mumber of bytes the file may grow to
’ Possible file attributes

An Example Program Using File System Calls
(2/2)

J+ Open the input file and create the output file =/

in_fd = openfargv[1]. ©_RDONLY); /= open the source file */

if (in_fd < 0) exit(2); I+ if it cannot be opened, exit +/
out_fd = creat{argv]2], OUTPUT _MODE); /= create the destination file =/
if fout_fd < 0) exit(3); [+ i it cannat be created, exit */

I+ Copy loop +/
while (TRUE) {
rd_count = read(in_fd. buffer, BUF _SIZE); /* read a block of data =/
if (rd_count <= 0) break; /= if end of file or error, exit loop */
wi_count = write(out I, bufter, rd_count); '+ write data =
it (wi_count <= 0) exit(4); [+ wi_count <= 0 is an error */

}
I+ Close the files */

close(in_id);

close(out_td);

it (rd_count == 0) I* no error on last read +/
exit(0);

else
exit(5); I+ error on last read */

THE UISIVERSITY O 17
NEW SOUTH WALES

E

An Example Program Using File System Calls
(1/2)

/* File copy program. Error checking and reporting is minimal. =

#include <sys/types.hx
#include <fentlhe
#include <stdib h>
#include <unistd. he

I+ include necessary header files +/

int main{int arge, char =argv{]); = ANSI protatype =/

#define BUF _SIZE 4096
#define QUTPUT _MODE 0700

= use a buffer size of 4096 bytes +
[+ protection bits for output file =/

int main{int arge, char *argv{])
{

int in_fd, out_fd, rd_count, wi_count;
char butfer[BUF _SIZE]:

if {arge '= 3) exit(1); I+ syntax error if ange is not 3 «/

THE UISIVERSITY O 16
NEW SOUTH WALES

E

Memory-Mapped Files

Program Program
text text

| Data | Data Xyz

(@ &)
(a) Segmented process before mapping files
into its address space
(b) Process after mapping
existing file abc into one segment
creating new segment for xyz

abe

THE URNIVERSITY (3 18
NEW SOUTH WALES




Memory-

mapped files E
and paging 113]
12
it 4]
Memory \[ % L 8
mapped 2 :H
file 18] ol
L7 Disk
16|
5
Physical

Address Space 19

THE UMIVERSITY O
MEW SOUTH WALES

File Organisation and Access
Programmer’s Perspective
» Given an operating system supporting
unstructured files that are a stream-of-bytes,

how should one organise the contents of the
files?

THE UISIVERSITY O 21
MEW SOUTH WALES

Memory-Mapped Files

» Avoids translating from on-disk format to in-
memory format (and vice versa)
— Supports complex structures
— No read/write systems calls
— File simply (paged or swapped) to file system
— Unmap when finished
* Problems
— Determining actual file size after modification
» Round to nearest whole page (even if only 1 byte file)
— Care must be taken if file is shared,

« E.g. one process memory-mapped and one process
read/write syscalls

_E — Large files may not fit in the virtual address space ,

THE UMIVERSITY O
MEW SOUTH WALES

File Organisation and Access
Programmer’s Perspective

» Performance » Possible access patterns:
considerations: - Read the whole file
— File system performance — Read individual blocks or
affects overall system records from a file
performance - Read blocks or records
— Organisation of the file preceding or following the
system affects current one
performance — Retrieve a set of records
— File organisation (data — Write a whole file
layout) affects performance sequentially
+ depends on access — Insert/delete/update
patterns

records in a file
— Update blocks in a file

Criteria for File Organization

» Rapid access

— Needed when accessing a single record

— Not needed for batch mode
+ Ease of update

— File on CD-ROM will not be updated, so this is not a concern
* Economy of storage

— Should be minimum redundancy in the data

— Redundancy can be used to speed access such as an index
» Simple maintenance
* Reliability

THE URNIVERSITY (3 23
MEW SOUTH WALES

THE UISIVERSITY O 22
MEW SOUTH WALES

Classic File Organisations

» There are many ways to organise a files
contents, here are just a few basic
methods
— Unstructured Stream (Pile)

— Sequential
— Indexed Sequential
— Direct or Hashed

THE UISIVERSITY O 24
MEW SOUTH WALES




Unstructured Stream

» Data are collected in
the order they arrive

* Purpose is to
accumulate a mass of
data and save it

» Records may have

different fields
* No structure .
+ Record access is by Chenop o
exhaustive search ) Ple I

THE UMIVERSITY O
MEW SOUTH WALES

Figure 12.3 Common File Organizationy

The Sequential File

» Fixed format used for
records

* Records are the same
length

» Field names and lengths
are attributes of the file

» One field is the key field
— Uniquely identifies the

Fhxed-eng b recorts
record Fixed sel of ekds In Mxed orler
— Records are stored in key Sequential onler hased oa key Meld
sequence

(h) Secpential File

THE UMIVERSITY O
MEW SOUTH WALES

Figure 12.3 Common File Organizationy

The Sequential File

* Update
— Same size record -
good
— Variable size — No
* Retrieval
— Single record - poor
— Subset — poor

Frxed-eng b RooRls

- EXhaUSﬁVe - Okay Froed sl of Nokis 18 X omer

Sequential onder hased oa key field

i) Sequential File

THE UMIVERSITY O
MEW SOUTH WALES

Figure 12.3 Common File Organizationg

Unstructured Stream Performance

* Update
— Same size record -
okay
— Variable size - poor
* Retrieval
— Single record - poor
— Subset — poor

. Varable-eagih onds
— Exhaustive - okay Varatle sel o ks

Chmactogleal oader

{a) File File

THE UMIVERSITY O
MEW SOUTH WALES

Figure 12.3 Common File Organizationy

Sequential File Update

* New records are placed in a log file or
transaction file

» Batch update is performed to merge the
log file with the master file

THE UISIVERSITY O 28
MEW SOUTH WALES

Indexed Sequential File

* Index provides a lookup e
capability to quickly reach
the vicinity of the desired
record Index

— Contains key field and a
pointer to the main file

— Indexed is searched to find
highest key value that is Key
equal or less than the File Ptr
desired key value

— Search continues in the
main file at the location
indicated by the pointer

THE URNIVERSITY (3 30
MEW SOUTH WALES




Comparison of sequential and
indexed sequential lookup

« Example: a file contains 1 million records

» On average 500,00 accesses are required
to find a record in a sequential file

« If an index contains 1000 entries, it will
take on average 500 accesses to find the
key, followed by 500 accesses in the main
file. Now on average it is 1000 accesses

THE UISIVERSITY O 31
MEW SOUTH WALES

Indexed Sequential File Update

* New records are added
to an overflow file

* Record in main file that Index
precedes it is updated
to contain a pointer to
the new record Koy

» The overflow is merged File Ptr
with the main file during
a batch update

([T

Overflow
File

THE UMIVERSITY O
MEW SOUTH WALES

Main

File

Indexed Sequential File
» Update Fie

— Same size record -
good

— Variable size - No
* Retrieval
— Single record - good Key
— Subset — poor File Ptr
— Exhaustive - okay

Index

THE UISIVERSITY O 33
MEW SOUTH WALES

The Direct, or Hashed File

» Key field required for each
record

» Key maps directly or via a
hash mechanism to an
address within the file

» Directly access a block at
a the known address

THE UISIVERSITY O 34
MEW SOUTH WALES

The Direct, or Hashed File

» Update

— Same size record - good

— Variable size — No

« Fixed sized records used key

* Retrieval

— Single record - excellent

— Subset — poor

— Exhaustive - poor

THE URNIVERSITY (3 35
MEW SOUTH WALES

Hashed
File

File Directories

» Contains information about files
— Attributes
— Location
— Ownership

* Directory itself is a file owned by the
operating system

» Provides mapping between file names and
the files themselves

THE URNIVERSITY (3 36
MEW SOUTH WALES




Simple Structure for a Directory

« List of entries, one for each file

» Sequential file with the name of
the file serving as the key

» Provides no help in organising the
files

» Forces user to be careful not to
use the same name for two

different files | |~—Root directory

B @EE)
B e 7

Two-level Scheme for a
Directory

» One directory for each user and a master directory
» Master directory contains entry for each user

— Provides access control information
» Each user directory is a simple list of files for that user
« Still provides no help in structuring collections of files
. -—Root directory

User

n E /dir@ ctory

W ST Wt %
=0 :
.= Files

Hierarchical, or Tree-Structured
Directory

» Master directory with user directories
underneath it

» Each user directory may have subdirectories
and files as entries
. =—Reot directory

Usar
directory..

THE UMIVERSITY O
MEW SOUTH WALES

Hierarchical, or Tree-Structured
Directory
* Files can be located by following a path
from the root, or master, directory down
various branches
— This is the absolute pathname for the file
» Can have several files with the same file

name as long as they have unique path
names

THE UISIVERSITY O 40
MEW SOUTH WALES

bin [+ Raet directary

ast

Current Working Directory

+ Always specifying the absolute pathname
for afile is tedious!
* Introduce the idea of a working directory

— Files are referenced relative to the working
directory

* Example: cwd = /home/kevine
.profile = /home/kevine/.profile

THE UISIVERSITY O 42
MEW SOUTH WALES




Relative and Absolute
Pathnames

* Absolute pathname

— A path specified from the root of the file system to the file
* A Relative pathname

— A pathname specified from the cwd

* Note: "’ (dot) and ‘..” (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine
../../etc/passwd

/etc/passwd
../kevine/../.././etc/passwd
Are all the same file

THE UISIVERSITY O 43
MEW SOUTH WALES

Nice properties of UNIX naming

» Simple, regular format

— Names referring to different servers, objects,
etc., have the same syntax.

*» Regular tools can be used where specialised tools
would be otherwise needed.

* Location independent

— Objects can be distributed or migrated, and
continue with the same names.

THE UISIVERSITY O 45
MEW SOUTH WALES

File Sharing

* In multiuser system, allow files to be
shared among users

* Two issues
— Access rights
— Management of simultaneous access

THE UISIVERSITY O 47
MEW SOUTH WALES

Typical Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Opendir 7. Link

4. Closedir 8. Unlink

THE UMIVERSITY O 44
MEW SOUTH WALES

An example of a bad naming
convention

» From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BINJCAT_V.EXE;13

THE UISIVERSITY O 46
MEW SOUTH WALES

Access Rights

* None
— User may not know of the existence of the file

— User is not allowed to read the user directory
that includes the file

* Knowledge

— User can only determine that the file exists
and who its owner is

THE URNIVERSITY (3 48
MEW SOUTH WALES




Access Rights

« Execution

— The user can load and execute a program but
cannot copy it

* Reading

— The user can read the file for any purpose,
including copying and execution

» Appending

— The user can add data to the file but cannot
modify or delete any of the file’s contents

THE UISIVERSITY O 49
MEW SOUTH WALES

Access Rights

* Owners
— Has all rights previously listed
— May grant rights to others using the following
classes of users
« Specific user
 User groups
« All for public files

THE UISIVERSITY O 51
MEW SOUTH WALES

Access Rights

» Updating
— The user can modify, deleted, and add to the
file’s data. This includes creating the file,
rewriting it, and removing all or part of the
data

» Changing protection

— User can change access rights granted to
other users

* Deletion
— User can delete the file

THE UISIVERSITY O 50
MEW SOUTH WALES

Case Study:
UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

* First letter: file type
d for directories
- for regular files)

» Three user categories
user, group, and other

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine  kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—Irw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rW-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

» Three access rights per category
read, write, and execute

drwxrwxrwx

user group other

THE URNIVERSITY (3 53
MEW SOUTH WALES

THE UISIVERSITY O 52
MEW SOUTH WALES

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rwW-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

» Execute permission for directory?

— Permission to access files in the directory
» To list a directory requires read permissions
* What about drwxr-x—x?

THE URNIVERSITY (3 54
MEW SOUTH WALES




UNIX Access Permissions

+ Shortcoming
— The three user categories a rather coarse
* Problematic example
— Joe owns file foo.bar
— Joe wishes to keep his file private
« Inaccessible to the general public
— Joe wishes to give Bill read and write access
— Joe wishes to give Peter read-only access
— 277727277

THE UISIVERSITY O 55
MEW SOUTH WALES

Simultaneous Access

» Most Oses provide mechanisms for users to
manage concurrent access to files
— Example: lockf(), flock() system calls

* Typically
— User may lock entire file when it is to be updated
— User may lock the individual records during the

update

* Mutual exclusion and deadlock are issues for

shared access

THE UISIVERSITY O 56
MEW SOUTH WALES

File Management Il

COMP3231
Operating Systems

THE UISIVERSITY O 57
MEW SOUTH WALES

Implementing Files

File [7]
8 logical % 3 4
blocks .
4] 2 7
13
2] 0 5
1]
[0] 1 6
Disk

Trade-off in physical block size

» Sequential Access
— The larger the block size, the fewer I/O operation
required
» Random Access
— The larger the block size, the more unrelated data
loaded.
— Spatial locality of access improves the situation
» Choosing the an appropriate block size is a
compromise

THE URNIVERSITY (3 59
MEW SOUTH WALES

THE UISIVERSITY O 58
MEW SOUTH WALES

Example Block Size Trade-off

1000 - - 1000
Disk space utilization *
_ \ §
§ 800 B8O =
s g
X 600 B0 3
®
] 8
E 400 a0 7
=
a £
200 20 ©
Data rate ~
0 i i I I 1 0
o 128 256 512 1K 2K 4K 8K 1686 0

Block size
+ Dark line (left hand scale) gives data rate of a disk
+ Dotted line (right hand scale) gives disk space efficiency
— All files 2KB (an approximate median file size)

THE URNIVERSITY (3 60
MEW SOUTH WALES

(percent)

10



File System Implementation

Entire disk

| Partmonﬁ]]tahle MT’! Digk T.Iibgnl\‘\lh |

| Boot block ]Superhlod\] Free space mgmi | I-nodes ] FRoot dir |F|Iesanﬂﬂuet1mie-s

A possible file system layout

ERSITY Cf 61
NI SOUTH WAL e

Implementing Files

* The file system must keep track of
— which blocks belong to which files.
— in what order the blocks form the file
— which blocks are free for allocation

» Given a logical region of a file, the file system

must identify the corresponding block(s) on disk.

— Stored in file system metadata
« file allocation table (FAT), directory, I-node
» Creating and writing files allocates blocks on
disk

— How?

THE UISIVERSITY O 62
MEW SOUTH WALES

Allocation Strategies

» Preallocation

— Need the maximum size for the file at the time of
creation

— Difficult to reliably estimate the maximum potential
size of the file

— Tend to overestimated file size so as not to run out of
space

» Dynamic Allocation
— Allocated in portions as needed

THE UISIVERSITY O 63
MEW SOUTH WALES

Portion Size

» Extremes
— Portion size = length of file (contiguous allocation)
— Portion size = block size
» Tradeoffs
— Contiguity increases performance for sequential operations
— Many small portions increase the size of the metadata
required to book-keep components of a file, free-space, etc.
— Fixed-sized portions simplify reallocation of space
— Variable-sized portions minimise internal fragmentation
losses

Methods of File Allocation

+ Contiguous allocation

— Single set of blocks is allocated to a file at the
time of creation
— Only a single entry in the directory entry
« Starting block and length of the file

+ External fragmentation will occur

ERSITY Cf 65
NI SOUTH WAL e

THE UNIY 64
NI SOUTH WAL e

S directory
le A File Name Start Block  Length
o1 ] AR R File A 2 3
Fik B 9 5
- sm| | = 5 3
0 o T | |°- ol ] Vik E 2% 3
6] |?|:| w7 v
w74 17 2° 7 137 17
27/ R e b o]
8 B 2] w[ ][]
\“-‘--.-_______-.-.-"./
E Figure 12.7 Contiguous File Allocation

11



+ Eventually, we will need compaction to
reclaim unusable disk space.

THE UISIVERSITY O 67
NEW SOUTH WALES

File A File Name _Start Block __Length
LIRSS RIS N e B o | piie A ) 3

Fike B i s
- s mzal | L
wiZZ wiZ wlZ vl W Mk 16 3
12 ] |I|EI w[ ] 19%
wBEA [ Jnl Ja[ ]
P N |
P P P
O O I N

NEW SOUTH WALES

iFigure 12.8 Contiguous File Allocation (After Compaction

Methods of File Allocation

» Chained (or linked list) allocation
+ Allocation on basis of individual block
— Each block contains a pointer to the next block in the chain

— Only single entry in a directory entry
« Starting block and length of file

* No external fragmentation

+ Best for sequential files
— Poor for random access

* No accommodation of the principle of locality
— Blocks end up scattered across the disk

THE UISIVERSITY O 69
NEW SOUTH WALES

directory
File B File Name Start Block  Lenzth
' men 1 s
E 6D 7D 3| e e )
w_Ju[J e[ Jn_]

[ Ja[Ja[ x|
25 Ja[_J2r[ ]|
o ][] s ]

\.________________./

» To improve performance, we can run a
defragmentation utility to consolidate files.

THE UISIVERSITY O il
NEW SOUTH WALES

E . ~ Figure 12.9 Chained Allocation

t directory

Vil B File Name_Start Block__Length
g mepncrac o B KN
w_JuJe[JnJu[]
s Jw ][ Jw[Jw[]
w22 Jan[ Ja[ ]
22 J2r[ s Jae[ ]

s m[Jx[Ju Jx ]
\-.._________________‘..-’

NEW SOUTH WALES

E Figure 12.10 Chained Allocation (after consolidation)

12



Methods of File Allocation

* Indexed allocation

— File allocation table contains a separate one-
level index for each file

— The index has one entry for each portion
allocated to the file

— The file allocation table contains block
number for the index

THE UISIVERSITY O 73
NEW SOUTH WALES

directory

File 3 File Name Index Block

2o ]2 J 22 ]2 ]2
25 J26[ J 2] 29
L

\w.________________/

BRww-

1ty T L
NEW SOUTH WALES

- directory

File Name Inidex Block

-=="T StariBiock____ Length |
N . ;
25 J2s[ J2[ ]2 \‘*.‘ i: :

ol s [ ][ s ]
b i N

NEW SOUTH WALES

gure 12.12 Indexed Allocation with Variable-Length Portions

E . Figure 12.11 Indexed Allocation with Block Pﬂrtiem

Indexed Allocation

» Supports both sequential and direct access to
the file

» Portions
— Block sized
« Eliminates external fragmentation
— Variable sized
 Improves contiguity
* Reduces index size

* Most common of the three forms of file allocation

UNIX I-node

File Attributes

Address of disk block O

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block &

LTI

Address of disk block 7

Address of block of pointers.

Disk block

containing

additional
disk addresses

An example of indexed allocation

THE UISIVERSITY O 7
NEW SOUTH WALES

THE UISIVERSITY O 76
NEW SOUTH WALES

Implementing Directories

/I:I

games | atiributes gamas E 1
mail | atributes mail ! —---'"'E
news | atiributes news | +—
work afributes work ..\[:l
ia) (L q Data structure:
containing the
attributes
« Simple fixed-sized directory entries
(a) disk addresses and attributes in directory entry
— DOS/Windows
(b) Directory in which each entry just refers to an i-node
- UNIX
THE USIVERSITY O 78
NEW SOUTH WALES

13



Fixed Size Directory Entries

+ Either too small
— Example: DOS 8+3 characters
» Waste too much space
— Example: 255 characters per file name

THE UISIVERSITY O 79
NEW SOUTH WALES

¥

Implementing Directories

Fida 1 ariry lengih Fointar 10 8 1% name Erary
tor one

File 1 atriutes Fia 1 atbituter. ™
Entr
Pl ] o T Puintar o #s 75 name 4

[ v [ o | T
M 1T Fia 2 atiitutes.
(-] Fointar 1o 8 3% name
Fiée 2 artry bength

Fila 3 amibutes.

P e [ ] ¢®
o | n | | =
- | L ° !
Fie 3 arery length . = [ -
b u d )
Fibe 3 atributes e |t @ "
[ CH N " s | o e
3 I
: [ s | o
]

* Two ways of ﬁ'andling long file names in directory
— (a) In-line
— (b) Ina heap

THE UMIVERSITY O
NEW SOUTH WALES

80

Implementing Directories

 Free variable length entries can create
external fragmentation in directory blocks
— Can compact when block is in RAM

THE UISIVERSITY O 81
NEW SOUTH WALES

Implementing Shared Files

« Copy entire directory entry (including file attributes)
— Updates to shared file not seen by all parties
— Not useful
» Keep attributes separate (in I-node) and create a new
entry (name) that points to the attributes (hard link)
— Updates visible
— If one link remove, the other remains (ownership is an issue)
» Create a special “LINK” file that contains the pathname
of the shared file (symbolic link, shortcut).
— File removal leaves dangling links
— Not as efficient to access
— Can point to names outside the particular file system
— Can transparently replace the file with another

THE URNIVERSITY (3 83
NEW SOUTH WALES

Shared Files
Files shared under different names
| | Root directory

¥

Owner=0C Owner =C
Count = 1 Count =2 Count =1

(a) (b} (c)
(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

THE Ui REITY O
NEW SOUTH WALES

Shared file
File system containing a shared file
THE L \I\'IKkII!;IIIJL 82
Shared Files
C's directory E's directory C's directory E's directory
Owner=C

14



Free DISk Space Management

42 20 6 1001101101101100
18 162 234 ononoNIoN
210 612 807 1010110110110110
o7 Mz 4z 0110110150111011
41 214 120 MO0 101
63 180 2 1011010100011
Fl 64 ) 0000118181011
48 216 169 1011101101101111
282 20 125 1001000111011
30 180 142 0110111011011
516 482 141 HOUIIDIION
A 1-KB dhsk block can hold 256 Abitmap

-4t ik block number

(a) Storing the free list on a linked list
(b) A bit map

THE UISIVERSITY O 85
NEW SOUTH WALES

Bit Tables

+ Individual bits in a bit vector flags used/free
blocks

+ 16GB disk with 512-byte blocks >4MB table
* May be too large to hold in main memory
» Expensive to search

— But may use a two level table

» Concentrating (de)allocations in a portion of the
bitmap has desirable effect of concentrating
access

» Simple to find contiguous free space

THE UISIVERSITY O 86
NEW SOUTH WALES

Free Block List

« List of all unallocated blocks

* Manage as LIFO or FIFO on disk with
ends in main memory
Background jobs can re-order list for better
contiguity
+ Store in free blocks themselves

— Does not reduce disk capacity

THE UISIVERSITY O 87
NEW SOUTH WALES

Disk Space Management

Main
rmmmy

a) Almost-full block of pomters to free disk blocks in RAM

- three blocks of pointers on disk
(b) Result of freeing a 3-block file

(c) Alternative strategy for handling 3 free blocks
- shaded entries are pointers to free disk blocks

Quotas

Open file table Quota table

Attributes Saoft block limit

disk addresses Hard block limit

tiserad Current # of blocks

Cuota pointer — Quota

# Block warnings left racced
Soft file limit for user 8

Hard file limit

Current # of files

T T # File warnings left

Quotas for keeping track of each user’s disk use

THE URNIVERSITY (3 89
NEW SOUTH WALES

THE UISIVERSITY O 88
NEW SOUTH WALES

15



