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Files

* Named repository for data

— Potentially large amount of data

» Beyond that available via virtual memory
— (Except maybe 64-bit systems)

— File lifetime is independent of process lifetime
— Used to share data between processes
« Convenience
— Input to applications is by means of a file
— Output is saved in a file for long-term storage
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Obijectives for a
File Management System

» Provide a convenient naming
system for files

* Provide uniform 1/O support for
a variety of storage device

* Optimise performance
* Minimize or eliminate the
potential for lost or destroyed

types data

— Same file abstraction * Provide I/0O support and
Provide a standardized set of access control for multiple

1/0 interface routines users

— Storage device drivers » Support system administration

interchangeable
» Guarantee that the data in the
file are valid
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(e.g., backups)

References

* Textbook
— Tanenbaum, Chapter 6
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File Management

» File management system is considered
part of the operating system
— Manages a trusted, shared resource
— Bridges the gap between:
« low-level disk organisation (an array of blocks),

« and the user’s views (a stream or collection of
records)

« Also includes tools outside the kernel

— E.g. formatting, recovery, defrag, consistency,
and backup utilities.
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File Names

* File system must provide a convenient naming
scheme
— Textual Names
— May have restrictions
« Only certain characters
— E.g. no ‘/ characters
« Limited length
« Only certain format
- EgDOS,8+3
— Case (in)sensitive
— Names may obey conventions (.c files or C files)
« Interpreted by tools (UNIX)
« Interpreted by operating system (Windows)
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File Naming

: Extenslon _ Meaning

| file.bak | Backup file

| file.c | C source program

| file.git | Compuserve Graphical Interchange Format image

| filehlpy | Help file

| file.htmi | Weorld Wide Web HyperText Markup Language dacument |
| filejpg | Still picture encoded with the JPEG standard

|file.mpd | Music encoded in MPEG layer 3 audio format
|filempg | Maovie encoded with the MPEG standard

| file.o | Object file (compiler cutput. not yet linked)
| file palt | Portable Docurnent Format file

| tile.ps | PostScript file

| file.teox | Input for the TEX formatting program

| il et | General text file

| file_zip | Compressad archive

Typical file extensions.
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File Structure
From OS’s perspective

1Byte 1 Record

Cat [ Gow [ 0og || [Geat] ton [ 0wt | [[Fory ][ Fan [eem]]

[ Hoo [ s Jrame]

s [ i

» Three kinds of files
— byte sequence
— record sequence
— tree
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File Structure

* Records

— Collection of bytes
treated as a unit
» Example: employee

» Stream of Bytes

— OS considers a file to
be unstructured

— Simplifies file
record
management for the .
0s — Operations at the level
Applicati of records (read_rec,
— Applications can write_rec)

impose their own
structure

— Used by UNIX,
Windows, most
modern OSes
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— File is a collection of
similar records

— OS can optimise
operations on records

File Structure

Tree of Records

— Records of variable length

— Each has an associated key

— Record retrieval based on key

— Used on some data processing systems (mainframes)

File Types

* Regular files
+ Directories
» Device Files
— May be divided into

+ Character Devices — stream of bytes
« Block Devices

+ Some systems distinguish between regular file types
— ASCII text files, binary files

+ At minimum, all systems recognise their own executable
file format
— May use a magic number
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(a) An executable file (b) An archivé (libxyz.a)
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File Access

» Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up
— convenient when medium was mag tape
* Random access
— bytes/records read in any order
— essential for data base systems
— read can be ...

« move file pointer (seek), then read or ...
« each read specifies the file pointer
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Typical File Operations

1. Create
2. Delete
3.0pen
4.Close
5.Read
6. Write

7. Append
8. Seek

9. Get
attributes

10.Set
Attributes

11.Rename
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F_ile Attributes

Attribute | Meaning

| Protection | Wha can access the fila and in what way

| Password | Password needed to access the fia

| Groator | 1D of the persan who created the fil

| oowmer | Currant owner

| Read-only fiag |0 for readiwrite: 1 for read only

| Hicden flag | 0'far narmal 1 for da not display in listings

| Systom flag |0 far narmal filos: 1 for system fie |
| Aschive flag | O far has been backed up: 1 for needs to be backed up |
| ASCllbinary flag | 0 far ASCII fike; 1 for binary file

| Random access flag | O for sequential access only; 1 for random access

| Temgorary nag | 0 tar narmal: 1 for delete file on process exit

| Lock flags | 0 for unlocked; nanzero for locked

| Recard length | Number of bytes in a record

| Key position |_Otsst af the key within each record

| Kay langtn | Number of bytes in the key lieid

| Creation time | Date and time the file was created

| Time of last access | Date and time the file was last acoessed
| Time of last change | Date and time the file has last changed

| Current size | Mumber of bytes in the file
Maximum size | Mumber of bytes the file may grow to
’ Possible file attributes

An Example Program Using File System Calls
(2/2)

J+ Open the input file and create the output file =/

in_fd = openfargv[1]. ©_RDONLY); /= open the source file */

if (in_fd < 0) exit(2); I+ if it cannot be opened, exit +/
out_fd = creat{argv]2], OUTPUT _MODE); /= create the destination file =/
if fout_fd < 0) exit(3); [+ i it cannat be created, exit */

I+ Copy loop +/
while (TRUE) {
rd_count = read(in_fd. buffer, BUF _SIZE); /* read a block of data =/
if (rd_count <= 0) break; /= if end of file or error, exit loop */
wi_count = write(out I, bufter, rd_count); '+ write data =
it (wi_count <= 0) exit(4); [+ wi_count <= 0 is an error */

}
I+ Close the files */

close(in_id);

close(out_td);

it (rd_count == 0) I* no error on last read +/
exit(0);

else
exit(5); I+ error on last read */
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An Example Program Using File System Calls
(1/2)

/* File copy program. Error checking and reporting is minimal. =

#include <sys/types.hx
#include <fentlhe
#include <stdib h>
#include <unistd. he

I+ include necessary header files +/

int main{int arge, char =argv{]); = ANSI protatype =/

#define BUF _SIZE 4096
#define QUTPUT _MODE 0700

= use a buffer size of 4096 bytes +
[+ protection bits for output file =/

int main{int arge, char *argv{])
{

int in_fd, out_fd, rd_count, wi_count;
char butfer[BUF _SIZE]:

if {arge '= 3) exit(1); I+ syntax error if ange is not 3 «/
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Memory-Mapped Files

Program Program
text text

| Data | Data Xyz

(@ &)
(a) Segmented process before mapping files
into its address space
(b) Process after mapping
existing file abc into one segment
creating new segment for xyz

abe
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File Organisation and Access
Programmer’s Perspective
» Given an operating system supporting
unstructured files that are a stream-of-bytes,

how should one organise the contents of the
files?
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Memory-Mapped Files

» Avoids translating from on-disk format to in-
memory format (and vice versa)
— Supports complex structures
— No read/write systems calls
— File simply (paged or swapped) to file system
— Unmap when finished
* Problems
— Determining actual file size after modification
» Round to nearest whole page (even if only 1 byte file)
— Care must be taken if file is shared,

« E.g. one process memory-mapped and one process
read/write syscalls

_E — Large files may not fit in the virtual address space ,
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File Organisation and Access
Programmer’s Perspective

» Performance » Possible access patterns:
considerations: - Read the whole file
— File system performance — Read individual blocks or
affects overall system records from a file
performance - Read blocks or records
— Organisation of the file preceding or following the
system affects current one
performance — Retrieve a set of records
— File organisation (data — Write a whole file
layout) affects performance sequentially
+ depends on access — Insert/delete/update
patterns

records in a file
— Update blocks in a file

Criteria for File Organization

» Rapid access

— Needed when accessing a single record

— Not needed for batch mode
+ Ease of update

— File on CD-ROM will not be updated, so this is not a concern
* Economy of storage

— Should be minimum redundancy in the data

— Redundancy can be used to speed access such as an index
» Simple maintenance
* Reliability
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Classic File Organisations

» There are many ways to organise a files
contents, here are just a few basic
methods
— Unstructured Stream (Pile)

— Sequential
— Indexed Sequential
— Direct or Hashed
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Unstructured Stream

» Data are collected in
the order they arrive

* Purpose is to
accumulate a mass of
data and save it

» Records may have

different fields
* No structure .
+ Record access is by Chenop o
exhaustive search ) Ple I
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Figure 12.3 Common File Organizationy

The Sequential File

» Fixed format used for
records

* Records are the same
length

» Field names and lengths
are attributes of the file

» One field is the key field
— Uniquely identifies the

Fhxed-eng b recorts
record Fixed sel of ekds In Mxed orler
— Records are stored in key Sequential onler hased oa key Meld
sequence

(h) Secpential File
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Figure 12.3 Common File Organizationy

The Sequential File

* Update
— Same size record -
good
— Variable size — No
* Retrieval
— Single record - poor
— Subset — poor

Frxed-eng b RooRls

- EXhaUSﬁVe - Okay Froed sl of Nokis 18 X omer

Sequential onder hased oa key field

i) Sequential File
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Figure 12.3 Common File Organizationg

Unstructured Stream Performance

* Update
— Same size record -
okay
— Variable size - poor
* Retrieval
— Single record - poor
— Subset — poor

. Varable-eagih onds
— Exhaustive - okay Varatle sel o ks

Chmactogleal oader

{a) File File
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Figure 12.3 Common File Organizationy

Sequential File Update

* New records are placed in a log file or
transaction file

» Batch update is performed to merge the
log file with the master file
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Indexed Sequential File

* Index provides a lookup e
capability to quickly reach
the vicinity of the desired
record Index

— Contains key field and a
pointer to the main file

— Indexed is searched to find
highest key value that is Key
equal or less than the File Ptr
desired key value

— Search continues in the
main file at the location
indicated by the pointer
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Comparison of sequential and
indexed sequential lookup

« Example: a file contains 1 million records

» On average 500,00 accesses are required
to find a record in a sequential file

« If an index contains 1000 entries, it will
take on average 500 accesses to find the
key, followed by 500 accesses in the main
file. Now on average it is 1000 accesses
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Indexed Sequential File Update

* New records are added
to an overflow file

* Record in main file that Index
precedes it is updated
to contain a pointer to
the new record Koy

» The overflow is merged File Ptr
with the main file during
a batch update

([T

Overflow
File
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Main

File

Indexed Sequential File
» Update Fie

— Same size record -
good

— Variable size - No
* Retrieval
— Single record - good Key
— Subset — poor File Ptr
— Exhaustive - okay

Index
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The Direct, or Hashed File

» Key field required for each
record

» Key maps directly or via a
hash mechanism to an
address within the file

» Directly access a block at
a the known address
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The Direct, or Hashed File

» Update

— Same size record - good

— Variable size — No

« Fixed sized records used key

* Retrieval

— Single record - excellent

— Subset — poor

— Exhaustive - poor
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Hashed
File

File Directories

» Contains information about files
— Attributes
— Location
— Ownership

* Directory itself is a file owned by the
operating system

» Provides mapping between file names and
the files themselves
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Simple Structure for a Directory

« List of entries, one for each file

» Sequential file with the name of
the file serving as the key

» Provides no help in organising the
files

» Forces user to be careful not to
use the same name for two

different files | |~—Root directory

B @EE)
B e 7

Two-level Scheme for a
Directory

» One directory for each user and a master directory
» Master directory contains entry for each user

— Provides access control information
» Each user directory is a simple list of files for that user
« Still provides no help in structuring collections of files
. -—Root directory

User

n E /dir@ ctory

W ST Wt %
=0 :
.= Files

Hierarchical, or Tree-Structured
Directory

» Master directory with user directories
underneath it

» Each user directory may have subdirectories
and files as entries
. =—Reot directory

Usar
directory..
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Hierarchical, or Tree-Structured
Directory
* Files can be located by following a path
from the root, or master, directory down
various branches
— This is the absolute pathname for the file
» Can have several files with the same file

name as long as they have unique path
names
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bin [+ Raet directary

ast

Current Working Directory

+ Always specifying the absolute pathname
for afile is tedious!
* Introduce the idea of a working directory

— Files are referenced relative to the working
directory

* Example: cwd = /home/kevine
.profile = /home/kevine/.profile
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Relative and Absolute
Pathnames

* Absolute pathname

— A path specified from the root of the file system to the file
* A Relative pathname

— A pathname specified from the cwd

* Note: "’ (dot) and ‘..” (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine
../../etc/passwd

/etc/passwd
../kevine/../.././etc/passwd
Are all the same file
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Nice properties of UNIX naming

» Simple, regular format

— Names referring to different servers, objects,
etc., have the same syntax.

*» Regular tools can be used where specialised tools
would be otherwise needed.

* Location independent

— Objects can be distributed or migrated, and
continue with the same names.
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File Sharing

* In multiuser system, allow files to be
shared among users

* Two issues
— Access rights
— Management of simultaneous access
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Typical Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Opendir 7. Link

4. Closedir 8. Unlink
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An example of a bad naming
convention

» From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BINJCAT_V.EXE;13
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Access Rights

* None
— User may not know of the existence of the file

— User is not allowed to read the user directory
that includes the file

* Knowledge

— User can only determine that the file exists
and who its owner is
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Access Rights

« Execution

— The user can load and execute a program but
cannot copy it

* Reading

— The user can read the file for any purpose,
including copying and execution

» Appending

— The user can add data to the file but cannot
modify or delete any of the file’s contents
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Access Rights

* Owners
— Has all rights previously listed
— May grant rights to others using the following
classes of users
« Specific user
 User groups
« All for public files
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Access Rights

» Updating
— The user can modify, deleted, and add to the
file’s data. This includes creating the file,
rewriting it, and removing all or part of the
data

» Changing protection

— User can change access rights granted to
other users

* Deletion
— User can delete the file
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Case Study:
UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

* First letter: file type
d for directories
- for regular files)

» Three user categories
user, group, and other

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine  kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—Irw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rW-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

» Three access rights per category
read, write, and execute

drwxrwxrwx

user group other
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UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rwW-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

» Execute permission for directory?

— Permission to access files in the directory
» To list a directory requires read permissions
* What about drwxr-x—x?
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UNIX Access Permissions

+ Shortcoming
— The three user categories a rather coarse
* Problematic example
— Joe owns file foo.bar
— Joe wishes to keep his file private
« Inaccessible to the general public
— Joe wishes to give Bill read and write access
— Joe wishes to give Peter read-only access
— 277727277
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Simultaneous Access

» Most Oses provide mechanisms for users to
manage concurrent access to files
— Example: lockf(), flock() system calls

* Typically
— User may lock entire file when it is to be updated
— User may lock the individual records during the

update

* Mutual exclusion and deadlock are issues for

shared access
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File Management Il

COMP3231
Operating Systems
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Implementing Files

File [7]
8 logical % 3 4
blocks .
4] 2 7
13
2] 0 5
1]
[0] 1 6
Disk

Trade-off in physical block size

» Sequential Access
— The larger the block size, the fewer I/O operation
required
» Random Access
— The larger the block size, the more unrelated data
loaded.
— Spatial locality of access improves the situation
» Choosing the an appropriate block size is a
compromise
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Example Block Size Trade-off

1000 - - 1000
Disk space utilization *
_ \ §
§ 800 B8O =
s g
X 600 B0 3
®
] 8
E 400 a0 7
=
a £
200 20 ©
Data rate ~
0 i i I I 1 0
o 128 256 512 1K 2K 4K 8K 1686 0

Block size
+ Dark line (left hand scale) gives data rate of a disk
+ Dotted line (right hand scale) gives disk space efficiency
— All files 2KB (an approximate median file size)
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File System Implementation

Entire disk

| Partmonﬁ]]tahle MT’! Digk T.Iibgnl\‘\lh |

| Boot block ]Superhlod\] Free space mgmi | I-nodes ] FRoot dir |F|Iesanﬂﬂuet1mie-s

A possible file system layout
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Implementing Files

* The file system must keep track of
— which blocks belong to which files.
— in what order the blocks form the file
— which blocks are free for allocation

» Given a logical region of a file, the file system

must identify the corresponding block(s) on disk.

— Stored in file system metadata
« file allocation table (FAT), directory, I-node
» Creating and writing files allocates blocks on
disk

— How?
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Allocation Strategies

» Preallocation

— Need the maximum size for the file at the time of
creation

— Difficult to reliably estimate the maximum potential
size of the file

— Tend to overestimated file size so as not to run out of
space

» Dynamic Allocation
— Allocated in portions as needed
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Portion Size

» Extremes
— Portion size = length of file (contiguous allocation)
— Portion size = block size
» Tradeoffs
— Contiguity increases performance for sequential operations
— Many small portions increase the size of the metadata
required to book-keep components of a file, free-space, etc.
— Fixed-sized portions simplify reallocation of space
— Variable-sized portions minimise internal fragmentation
losses

Methods of File Allocation

+ Contiguous allocation

— Single set of blocks is allocated to a file at the
time of creation
— Only a single entry in the directory entry
« Starting block and length of the file

+ External fragmentation will occur
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S directory
le A File Name Start Block  Length
o1 ] AR R File A 2 3
Fik B 9 5
- sm| | = 5 3
0 o T | |°- ol ] Vik E 2% 3
6] |?|:| w7 v
w74 17 2° 7 137 17
27/ R e b o]
8 B 2] w[ ][]
\“-‘--.-_______-.-.-"./
E Figure 12.7 Contiguous File Allocation
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+ Eventually, we will need compaction to
reclaim unusable disk space.
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File A File Name _Start Block __Length
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iFigure 12.8 Contiguous File Allocation (After Compaction

Methods of File Allocation

» Chained (or linked list) allocation
+ Allocation on basis of individual block
— Each block contains a pointer to the next block in the chain

— Only single entry in a directory entry
« Starting block and length of file

* No external fragmentation

+ Best for sequential files
— Poor for random access

* No accommodation of the principle of locality
— Blocks end up scattered across the disk
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directory
File B File Name Start Block  Lenzth
' men 1 s
E 6D 7D 3| e e )
w_Ju[J e[ Jn_]

[ Ja[Ja[ x|
25 Ja[_J2r[ ]|
o ][] s ]

\.________________./

» To improve performance, we can run a
defragmentation utility to consolidate files.
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E . ~ Figure 12.9 Chained Allocation

t directory

Vil B File Name_Start Block__Length
g mepncrac o B KN
w_JuJe[JnJu[]
s Jw ][ Jw[Jw[]
w22 Jan[ Ja[ ]
22 J2r[ s Jae[ ]

s m[Jx[Ju Jx ]
\-.._________________‘..-’

NEW SOUTH WALES

E Figure 12.10 Chained Allocation (after consolidation)
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Methods of File Allocation

* Indexed allocation

— File allocation table contains a separate one-
level index for each file

— The index has one entry for each portion
allocated to the file

— The file allocation table contains block
number for the index
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directory

File 3 File Name Index Block

2o ]2 J 22 ]2 ]2
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- directory

File Name Inidex Block

-=="T StariBiock____ Length |
N . ;
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gure 12.12 Indexed Allocation with Variable-Length Portions

E . Figure 12.11 Indexed Allocation with Block Pﬂrtiem

Indexed Allocation

» Supports both sequential and direct access to
the file

» Portions
— Block sized
« Eliminates external fragmentation
— Variable sized
 Improves contiguity
* Reduces index size

* Most common of the three forms of file allocation

UNIX I-node

File Attributes

Address of disk block O

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block &

LTI

Address of disk block 7

Address of block of pointers.

Disk block

containing

additional
disk addresses

An example of indexed allocation
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Implementing Directories

/I:I

games | atiributes gamas E 1
mail | atributes mail ! —---'"'E
news | atiributes news | +—
work afributes work ..\[:l
ia) (L q Data structure:
containing the
attributes
« Simple fixed-sized directory entries
(a) disk addresses and attributes in directory entry
— DOS/Windows
(b) Directory in which each entry just refers to an i-node
- UNIX
THE USIVERSITY O 78
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Fixed Size Directory Entries

+ Either too small
— Example: DOS 8+3 characters
» Waste too much space
— Example: 255 characters per file name

THE UISIVERSITY O 79
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¥

Implementing Directories

Fida 1 ariry lengih Fointar 10 8 1% name Erary
tor one

File 1 atriutes Fia 1 atbituter. ™
Entr
Pl ] o T Puintar o #s 75 name 4

[ v [ o | T
M 1T Fia 2 atiitutes.
(-] Fointar 1o 8 3% name
Fiée 2 artry bength

Fila 3 amibutes.

P e [ ] ¢®
o | n | | =
- | L ° !
Fie 3 arery length . = [ -
b u d )
Fibe 3 atributes e |t @ "
[ CH N " s | o e
3 I
: [ s | o
]

* Two ways of ﬁ'andling long file names in directory
— (a) In-line
— (b) Ina heap
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Implementing Directories

 Free variable length entries can create
external fragmentation in directory blocks
— Can compact when block is in RAM
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Implementing Shared Files

« Copy entire directory entry (including file attributes)
— Updates to shared file not seen by all parties
— Not useful
» Keep attributes separate (in I-node) and create a new
entry (name) that points to the attributes (hard link)
— Updates visible
— If one link remove, the other remains (ownership is an issue)
» Create a special “LINK” file that contains the pathname
of the shared file (symbolic link, shortcut).
— File removal leaves dangling links
— Not as efficient to access
— Can point to names outside the particular file system
— Can transparently replace the file with another

THE URNIVERSITY (3 83
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Shared Files
Files shared under different names
| | Root directory

¥

Owner=0C Owner =C
Count = 1 Count =2 Count =1

(a) (b} (c)
(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

THE Ui REITY O
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Shared file
File system containing a shared file
THE L \I\'IKkII!;IIIJL 82
Shared Files
C's directory E's directory C's directory E's directory
Owner=C
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Free DISk Space Management

42 20 6 1001101101101100
18 162 234 ononoNIoN
210 612 807 1010110110110110
o7 Mz 4z 0110110150111011
41 214 120 MO0 101
63 180 2 1011010100011
Fl 64 ) 0000118181011
48 216 169 1011101101101111
282 20 125 1001000111011
30 180 142 0110111011011
516 482 141 HOUIIDIION
A 1-KB dhsk block can hold 256 Abitmap

-4t ik block number

(a) Storing the free list on a linked list
(b) A bit map
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Bit Tables

+ Individual bits in a bit vector flags used/free
blocks

+ 16GB disk with 512-byte blocks >4MB table
* May be too large to hold in main memory
» Expensive to search

— But may use a two level table

» Concentrating (de)allocations in a portion of the
bitmap has desirable effect of concentrating
access

» Simple to find contiguous free space
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Free Block List

« List of all unallocated blocks

* Manage as LIFO or FIFO on disk with
ends in main memory
Background jobs can re-order list for better
contiguity
+ Store in free blocks themselves

— Does not reduce disk capacity
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Disk Space Management

Main
rmmmy

a) Almost-full block of pomters to free disk blocks in RAM

- three blocks of pointers on disk
(b) Result of freeing a 3-block file

(c) Alternative strategy for handling 3 free blocks
- shaded entries are pointers to free disk blocks

Quotas

Open file table Quota table

Attributes Saoft block limit

disk addresses Hard block limit

tiserad Current # of blocks

Cuota pointer — Quota

# Block warnings left racced
Soft file limit for user 8

Hard file limit

Current # of files

T T # File warnings left

Quotas for keeping track of each user’s disk use
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